CMA-ES with Optimal Covariance Update and Storage Complexity

被引:0
|
作者
Krause, Oswin [1 ]
Arbones, Didac R. [1 ]
Igel, Christian [1 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
关键词
EVOLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The covariance matrix adaptation evolution strategy (CMA-ES) is arguably one of the most powerful real-valued derivative-free optimization algorithms, finding many applications in machine learning. The CMA-ES is a Monte Carlo method, sampling from a sequence of multi-variate Gaussian distributions. Given the function values at the sampled points, updating and storing the covariance matrix dominates the time and space complexity in each iteration of the algorithm. We propose a numerically stable quadratic-time covariance matrix update scheme with minimal memory requirements based on maintaining triangular Cholesky factors. This requires a modification of the cumulative step-size adaption (CSA) mechanism in the CMA-ES, in which we replace the inverse of the square root of the covariance matrix by the inverse of the triangular Cholesky factor. Because the triangular Cholesky factor changes smoothly with the matrix square root, this modification does not change the behavior of the CMA-ES in terms of required objective function evaluations as verified empirically. Thus, the described algorithm can and should replace the standard CMA-ES if updating and storing the covariance matrix matters.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A CMA-ES with Multiplicative Covariance Matrix Updates
    Krause, Oswin
    Glasmachers, Tobias
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 281 - 288
  • [2] Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    Hansen, N
    Muller, SD
    Koumoutsakos, P
    [J]. EVOLUTIONARY COMPUTATION, 2003, 11 (01) : 1 - 18
  • [3] Reducing the Space-Time Complexity of the CMA-ES
    Knight, James N.
    Lunacek, Monte
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 658 - 665
  • [4] Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES
    Igel, Christian
    Suttorp, Thorsten
    Hansen, Nikolaus
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 171 - +
  • [5] Exploring optimal topology of thermal cloaks by CMA-ES
    Fujii, Garuda
    Akimoto, Youhei
    Takahashi, Masayuki
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (06)
  • [6] Active Covariance Matrix Adaptation for multi-objective CMA-ES
    Krimpmann, Christoph
    Braun, Jan
    Hoffmann, Frank
    Bertram, Torsten
    [J]. 2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 189 - 194
  • [7] Evolving Mean-Update Selection Methods for CMA-ES
    Richter, Samuel N.
    Schoen, Michael G.
    Tauritz, Daniel R.
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1513 - 1517
  • [8] A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity
    Ros, Raymond
    Hansen, Nikolaus
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS, 2008, 5199 : 296 - +
  • [9] CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization
    Karmakar, Bishal
    Kumar, Abhishek
    Mallipeddi, Rammohan
    Lee, Dong-Gyu
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 79
  • [10] PSA-CMA-ES: CMA-ES with Population Size Adaptation
    Nishida, Kouhei
    Akimoto, Youhei
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 865 - 872