Bio-plausible digital implementation of a reward modulated STDP synapse

被引:14
|
作者
Quintana, Fernando M. [1 ]
Perez-Pena, Fernando [2 ]
Galindo, Pedro L. [1 ]
机构
[1] Univ Cadiz, Escuela Super Ingn, Dept Comp Sci & Engn, Avda Univ Cadiz 10, Cadiz 11519, Spain
[2] Univ Cadiz, Escuela Super Ingn, Dept Automat Elect & Comp Architecture & Networks, Avda Univ Cadiz 10, Cadiz 11519, Spain
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 18期
关键词
R-STDP; STDP; Synaptic plasticity; Neuromorphic system; FPGA; Spiking neural network;
D O I
10.1007/s00521-022-07220-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP) is a learning method for Spiking Neural Network (SNN) that makes use of an external learning signal to modulate the synaptic plasticity produced by Spike-Timing-Dependent Plasticity (STDP). Combining the advantages of reinforcement learning and the biological plausibility of STDP, online learning on SNN in real-world scenarios can be applied. This paper presents a fully digital architecture, implemented on an Field-Programmable Gate Array (FPGA), including the R-STDP learning mechanism in a SNN. The hardware results obtained are comparable to the software simulations results using the Brian2 simulator. The maximum error is of 0.083 when a 14-bits fix-point precision is used in realtime. The presented architecture shows an accuracy of 95% when tested in an obstacle avoidance problem on mobile robotics with a minimum use of resources.
引用
收藏
页码:15649 / 15660
页数:12
相关论文
共 50 条
  • [1] Bio-plausible digital implementation of a reward modulated STDP synapse
    Fernando M. Quintana
    Fernando Perez-Peña
    Pedro L. Galindo
    Neural Computing and Applications, 2022, 34 : 15649 - 15660
  • [2] Dendritic-Inspired Processing Enables Bio-Plausible STDP in Compound Binary Synapses
    Wu, Xinyu
    Saxena, Vishal
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 149 - 159
  • [3] Enabling Bio-Plausible Multi-level STDP using CMOS Neurons with Dendrites and Bistable RRAMs
    Wu, Xinyu
    Saxena, Vishal
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3522 - 3526
  • [4] A bio-plausible design for visual attitude stabilization
    Censi, Andrea
    Han, Shuo
    Fuller, Sawyer B.
    Murray, Richard M.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3513 - 3520
  • [5] Complex Learning in Bio-plausible Memristive Networks
    Lei Deng
    Guoqi Li
    Ning Deng
    Dong Wang
    Ziyang Zhang
    Wei He
    Huanglong Li
    Jing Pei
    Luping Shi
    Scientific Reports, 5
  • [6] Complex Learning in Bio-plausible Memristive Networks
    Deng, Lei
    Li, Guoqi
    Deng, Ning
    Wang, Dong
    Zhang, Ziyang
    He, Wei
    Li, Huanglong
    Pei, Jing
    Shi, Luping
    SCIENTIFIC REPORTS, 2015, 5
  • [7] A bio-plausible design for visual pose stabilization
    Han, Shuo
    Censi, Andrea
    Straw, Andrew D.
    Murray, Richard M.
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [8] Bio-plausible model of electronic memristive neuron
    Talanov, M.
    Zykov, E.
    Lavrov, I.
    Erokhin, V.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2018, 48 : 223 - 224
  • [9] Bio-Plausible Multimodal Learning with Emerging Neuromorphic Devices
    Sun, Haonan
    Tian, Haoxiang
    Hu, Yihao
    Cui, Yi
    Chen, Xinrui
    Xu, Minyi
    Wang, Xianfu
    Zhou, Tao
    ADVANCED SCIENCE, 2024, 11 (45)
  • [10] Bio-plausible reconfigurable spiking neuron for neuromorphic computing
    Xiao, Yu
    Liu, Yize
    Zhang, Bihua
    Chen, Peng
    Zhu, Huaze
    He, Enhui
    Zhao, Jiayi
    Huo, Wenju
    Jin, Xiaofei
    Zhang, Xumeng
    Jiang, Hao
    Ma, De
    Zheng, Qian
    Tang, Huajin
    Lin, Peng
    Kong, Wei
    Pan, Gang
    SCIENCE ADVANCES, 2025, 11 (06):