A real QZ algorithm for structured companion pencils

被引:1
|
作者
Boito, P. [1 ,2 ]
Eidelman, Y. [3 ]
Gemignani, L. [4 ]
机构
[1] XLIM DMI UMR CNRS 7252, Fac Sci & Tech, 123 Ave A Thomas, F-87060 Limoges, France
[2] Univ Lyon, ENS Lyon, Lab LIP, CNRS,Inria,UCBL, 46 Allee Italie, F-69364 Lyon 07, France
[3] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Ramat Aviv, Israel
[4] Univ Pisa, Dipartimento Informat, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
关键词
Rank-structured matrix; Quasiseparable matrix; Real QZ algorithm; Lagrange approximation; Eigenvalue computation; Complexity; MATRIX;
D O I
10.1007/s10092-017-0231-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
引用
收藏
页码:1305 / 1338
页数:34
相关论文
共 50 条
  • [1] A real QZ algorithm for structured companion pencils
    P. Boito
    Y. Eidelman
    L. Gemignani
    Calcolo, 2017, 54 : 1305 - 1338
  • [2] Quasiseparable structures of companion pencils under the QZ-algorithm
    L. Gemignani
    CALCOLO, 2005, 42 : 215 - 226
  • [3] Quasiseparable structures of companion pencils under the QZ-algorithm
    Gemignani, L
    CALCOLO, 2005, 42 (3-4) : 215 - 226
  • [4] A note on companion pencils
    Aurentz, Jared L.
    Mach, Thomas
    Vandebril, Raf
    Watkins, David S.
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 91 - 101
  • [5] A structured staircase algorithm for skew-symmetric/symmetric pencils
    Department of Mathematics, University of Kansas, Lawrence, KS 44045, United States
    不详
    不详
    Electron. Trans. Numer. Anal., 2007, (1-33):
  • [6] ON QZ ALGORITHM
    BERLIOZ, JP
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1979, 13 (01): : 21 - 30
  • [7] A structured staircase algorithm for skew-symmetric/symmetric pencils
    Byers, Ralph
    Mehrmann, Volker
    Xu, Hongguo
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 1 - 33
  • [8] Corrigendum to “A note on generalized companion pencils”
    Fernando De Terán
    Carla Hernando
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [9] Corrigendum to "A note on generalized companion pencils"
    De Teran, Fernando
    Hernando, Carla
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [10] STRUCTURED BACKWARD ERRORS AND PSEUDOSPECTRA OF STRUCTURED MATRIX PENCILS
    Adhikari, Bibhas
    Alam, Rafikul
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 331 - 359