GCHGAT: pedestrian trajectory prediction using group constrained hierarchical graph attention networks

被引:14
|
作者
Zhou, Lei [1 ,2 ]
Zhao, Yingli [1 ,2 ]
Yang, Dingye [1 ,2 ]
Liu, Jingtai [1 ,2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Inst Robot & Automat Informat Syst, Tianjin 300353, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Pedestrian trajectory prediction; Social group; Generative adversarial network; Hierarchical graph attention network; ROBOT NAVIGATION; MODEL;
D O I
10.1007/s10489-021-02997-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting the motion of pedestrians is a challenge due to the uncertainty of the target pedestrian itself and the influence of other people in the environment. Modelling social interactions is of great significance for pedestrian trajectory prediction. However, most of the existing works only focus on the pair-wise interactions of humans but ignore the group-wise interactions. This paper proposes a group constrained hierarchical graph attention network, GCHGAT, to capture the intragroup, outgroup, and intergroup interaction separately. We first get a rough prediction via a vanilla generative adversarial network. Then, a state-refinement module is used to refine the rough prediction based on interaction information. We compare the performance of our method with related methods on the ETH and UCY datasets. The results show that our approach outperforms all benchmarks with the lowest average prediction error and successfully predicts complex social behaviours.
引用
收藏
页码:11434 / 11447
页数:14
相关论文
共 50 条
  • [1] GCHGAT: pedestrian trajectory prediction using group constrained hierarchical graph attention networks
    Lei Zhou
    Yingli Zhao
    Dingye Yang
    Jingtai Liu
    [J]. Applied Intelligence, 2022, 52 : 11434 - 11447
  • [2] EvoSTGAT: Evolving spatiotemporal graph attention networks for pedestrian trajectory prediction
    Tang, Haowen
    Wei, Ping
    Li, Jiapeng
    Zheng, Nanning
    [J]. NEUROCOMPUTING, 2022, 491 : 333 - 342
  • [3] PTPGC: Pedestrian trajectory prediction by graph attention network with ConvLSTM
    Yang, Juan
    Sun, Xu
    Wang, Rong Gui
    Xue, Li Xia
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 148
  • [4] PTPGC: Pedestrian trajectory prediction by graph attention network with ConvLSTM
    Yang, Juan
    Sun, Xu
    Wang, Rong Gui
    Xue, Li Xia
    [J]. Robotics and Autonomous Systems, 2022, 148
  • [5] EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
    Kong, Wei
    Liu, Yun
    Li, Hui
    Wang, Chuanxu
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [6] Unsupervised pedestrian trajectory prediction with graph neural networks
    Wang, Mingkun
    Shi, Dianxi
    Guan, Naiyang
    Zhang, Tao
    Wang, Liujing
    Li, Ruoxiang
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 832 - 839
  • [7] Pedestrian Trajectory Prediction Based on Tree Method using Graph Neural Networks
    Sighencea, Bogdan Ilie
    [J]. 2022 24TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC, 2022, : 245 - 249
  • [8] Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network
    Eiffert, Stuart
    Li, Kunming
    Shan, Mao
    Worrall, Stewart
    Sukkarieh, Salah
    Nebot, Eduardo
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 5026 - 5033
  • [9] Pedestrian Trajectory Prediction Based on Attention Mechanism and Sparse Graph Convolution
    Min, Chen
    Kai, Zeng
    Tao, Shen
    Yan, Zhu
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [10] SCSG Attention: A Self-centered Star Graph with Attention for Pedestrian Trajectory Prediction
    Chen, Xu
    Liu, Shuncheng
    Xu, Zhi
    Diao, Yupeng
    Wu, Shaozhi
    Zheng, Kai
    Su, Han
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 422 - 438