Intent-Aware Search Result Diversif cation

被引:0
|
作者
Santos, Rodrygo L. T. [1 ]
Macdonald, Craig [1 ]
Ounis, Iadh [1 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow G12 8QQ, Lanark, Scotland
关键词
Web Search; Relevance; Diversity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Search result diversification has gained momentum as a way to tackle ambiguous queries. An effective approach to this problem is to explicitly model the possible aspects underlying a query, in order to maximise the estimated relevance of the retrieved documents with respect to the different aspects. However, such aspects themselves may represent information needs with rather distinct intents (e.g., informational or navigational). Hence, a diverse ranking could benefit from applying intent-aware retrieval models when estimating the relevance of documents to different aspects. In this paper, we propose to diversify the results retrieved for a given query, by learning the appropriateness of different retrieval models for each of the aspects underlying this query. Thorough experiments within the evaluation framework provided by the diversity task of the TREC 2009 and 2010 Web tracks show that the proposed approach can significantly improve state-of-the-art diversification approaches.
引用
收藏
页码:595 / 604
页数:10
相关论文
共 50 条
  • [1] Intent-Aware Video Search Result Optimization
    Kofler, Christoph
    Larson, Martha
    Hanjalic, Alan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (05) : 1421 - 1433
  • [2] Intent-aware image cloning
    Bie, Xiaohui
    Wang, Wencheng
    Sun, Hanqiu
    Huang, Haoda
    Zhang, Minying
    VISUAL COMPUTER, 2013, 29 (6-8): : 599 - 608
  • [3] Intent-aware image cloning
    Xiaohui Bie
    Wencheng Wang
    Hanqiu Sun
    Haoda Huang
    Minying Zhang
    The Visual Computer, 2013, 29 : 599 - 608
  • [4] Intent-aware Query Obfuscation for Privacy Protection in Personalized Web Search
    Ahmad, Wasi Uddin
    Chang, Kai-Wei
    Wang, Hongning
    ACM/SIGIR PROCEEDINGS 2018, 2018, : 285 - 294
  • [5] Scalable Aspects Learning for Intent-Aware Diversified Search on Social Networks
    Meng, Zaiqiao
    Shen, Hong
    IEEE ACCESS, 2018, 6 : 37124 - 37137
  • [6] A Comparison of Calibrated and Intent-Aware Recommendations
    Kaya, Mesut
    Bridge, Derek
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 151 - 159
  • [7] Intent-Aware Semantic Query Annotation
    Glater, Rafael
    Santos, Rodrygo L. T.
    Ziviani, Nivio
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 485 - 494
  • [8] Intent-Aware Contextual Recommendation System
    Bhattacharya, Biswarup
    Burhanuddin, Iftikhar
    Sancheti, Abhilasha
    Satya, Kushal
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 1 - 8
  • [9] Intent-Aware Data Visualization Recommendation
    Maruta, Atsuki
    Kato, Makoto P.
    DATA SCIENCE AND ENGINEERING, 2022, 7 (04) : 301 - 315
  • [10] Intent-Aware Data Visualization Recommendation
    Atsuki Maruta
    Makoto P. Kato
    Data Science and Engineering, 2022, 7 : 301 - 315