The Complexity of Partition Tasks

被引:2
|
作者
Esponda, Fernando [1 ]
Vera-Cruz, Matias
Tarraso, Jorge
Morales, Marco
机构
[1] Inst Tecnol Autonomo Mexico, Dept Comp Sci, Mexico City, DF, Mexico
关键词
agent synchronization; partition tasks; task complexity; El Farol; SELF-ORGANIZATION; INFORMATION;
D O I
10.1002/cplx.20324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce the partition task problem class along with a complexity measure to evaluate its instances and a performance measure to quantify the ability of a system to solve them. We explore, via simulations, some potential applications of these concepts and present some results as examples that highlight their usefulness in policy design scenarios, where the optimal number of elements in a partition or the optimal size of the elements in a partition must be determined. (C) 2010 Wiley Periodicals, Inc. Complexity 16: 56-64, 2010
引用
收藏
页码:56 / 64
页数:9
相关论文
共 50 条
  • [1] The Complexity of Vector Partition
    Onn, Shmuel
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (03) : 707 - 718
  • [2] The complexity of partition functions
    Bulatov, A
    Grohe, M
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 294 - 306
  • [3] The Complexity of Vector Partition
    Shmuel Onn
    Vietnam Journal of Mathematics, 2022, 50 : 707 - 718
  • [4] The complexity of partition functions
    Bulatov, A
    Grohe, M
    THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) : 148 - 186
  • [5] The complexity of tasks in an occupation
    Riviere, Jaime
    EMPIRIA, 2009, (17): : 91 - 121
  • [6] Complexity of graph partition problems
    Feder, Tomas
    Hell, Pavol
    Klein, Sulamita
    Motwani, Rajeev
    Conference Proceedings of the Annual ACM Symposium on Theory of Computing, 1999, : 464 - 472
  • [7] On the complexity of Hilbert refutations for partition
    Margulies, S.
    Onn, S.
    Pasechnik, D. V.
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 66 : 70 - 83
  • [8] A NOTE ON THE COMPLEXITY OF A PARTITION ALGORITHM
    LIFSCHITZ, V
    PESOTCHINSKY, L
    INFORMATION PROCESSING LETTERS, 1983, 17 (03) : 117 - 120
  • [9] Crystallographic complexity partition analysis
    Hornfeck, Wolfgang
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2022, 237 (4-5): : 127 - 134
  • [10] The Complexity of the Partition Coloring Problem
    Guo, Zhenyu
    Xiao, Mingyu
    Zhou, Yi
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 390 - 401