FPGA-Based Implementation of a Real-Time Object Recognition System Using Convolutional Neural Network

被引:35
|
作者
Gilan, Ali Azarmi [1 ]
Emad, Mohammad [1 ]
Alizadeh, Bijan [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 14395515, Iran
关键词
Micromechanical devices; Convolution; Kernel; Bandwidth; Object recognition; Arrays; Real-time systems; Convolutional neural network; object recognition; FPGA; configurable architecture;
D O I
10.1109/TCSII.2019.2922372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High computational complexity and power consumption makes convolutional neural networks (CNNs) ineligible for real-time embedded applications. In this brief, we introduce a low power and flexible platform as a hardware accelerator for CNNs. The proposed architecture is fully configurable by a software library so that it can perform different CNN models with a reconfigurable hardware. The hardware accelerator is evaluated on a ZC706 evaluation board. We make use of the AlexNet architecture in a real-time object recognition application to demonstrate the effectiveness of the proposed CNN accelerator. The results show that the performance rates of 198.1 GOP/s using 512 DSP blocks and 23.14 GOP/s using 64 DSP blocks are achievable for the convolution and fully connected layers, respectively. Moreover, images are processed at 82 frames/s, which is significantly higher than existing implementations.
引用
收藏
页码:755 / 759
页数:5
相关论文
共 50 条
  • [1] FPGA-based Implementation of Hand Gesture Recognition Using Convolutional Neural Network
    Zhang, Tongtong
    Zhou, Weiguo
    Jiang, Xin
    Liu, Yunhui
    2018 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), 2018, : 133 - 138
  • [2] Design and Implementation of an FPGA-based Real-Time Face Recognition System
    Matai, Janarbek
    Irturk, Ali
    Kastner, Ryan
    2011 IEEE 19TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2011, : 97 - 100
  • [3] Real-Time Implementation of the Neutron/Gamma Discrimination in an FPGA-Based DAQ MTCA Platform Using a Convolutional Neural Network
    Astrain, Miguel
    Ruiz, Mariano
    Stephen, Adam, V
    Sarwar, Rashed
    Carpeno, Antonio
    Esquembri, Sergio
    Murari, Andrea
    Belli, Francesco
    Riva, Marco
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 2173 - 2178
  • [4] Real-Time Video Object Recognition Using Convolutional Neural Network
    Ahn, Byungik
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [5] Modulation recognition using an FPGA-based convolutional neural network
    Liu, Xueyuan
    Shang, Jing
    Leong, Philip H. W.
    Liu, Cheng
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 3165 - 3170
  • [6] FPGA Implementation of a Real-Time Super-Resolution System Using a Convolutional Neural Network
    Manabe, Taito
    Shibata, Yuichiro
    Oguri, Kiyoshi
    2016 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2016, : 249 - 252
  • [7] Real-Time Object Recognition Algorithm Based on Deep Convolutional Neural Network
    Yang, Lihong
    Wang, Liewei
    Wu, Shuo
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 331 - 335
  • [8] Real-Time Underwater Image Recognition with FPGA Embedded System for Convolutional Neural Network
    Zhao, Minghao
    Hu, Chengquan
    Wei, Fenglin
    Wang, Kai
    Wang, Chong
    Jiang, Yu
    SENSORS, 2019, 19 (02)
  • [9] FPGA-based Convolutional Neural Network Design and Implementation
    Yan, Ruitao
    Yi, Jianjun
    He, Jie
    Zhao, Yifan
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 456 - 460
  • [10] FPGA-Based Real-Time Road Object Detection System Using mmWave Radar
    Mohan, Anand
    Meena, Hemant Kumar
    Wajid, Mohd
    Srivastava, Abhishek
    IEEE SENSORS LETTERS, 2025, 9 (04)