Periodic traveling waves in nonlinear chains

被引:0
|
作者
RodriguezAchach, M
Perez, G
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of periodic traveling-wave solutions for three different nonlinear chains is studied. In all cases it is found that nontrivial solutions exist only for the sector of the frequency-wavenumber plane given by omega(k)greater than or equal to omega(harmonic)(k). There is a ''dispersion relation'' (understood here only as a functional relationship between frequency and wavenumbers) for each value of the average energy of the wave. In the case of the Fermi-Pasta-Ulam chain this result can be related, through scaling, with the existence of only one energy-independent dispersion curve for the harmonic chain. The limits of small amplitude and large wavelength are also explored, and used to implement different approximations to the traveling wave solution.
引用
收藏
页码:878 / 896
页数:19
相关论文
共 50 条
  • [1] Bifurcations and highly nonlinear traveling waves in periodic dimer granular chains
    Shen, Jianwei
    Miao, Baojun
    Luo, Jigui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (12) : 1445 - 1449
  • [2] STRONGLY NONLINEAR SPATIALLY PERIODIC TRAVELING WAVES IN GRANULAR DIMER CHAINS
    Jayaprakash, K. R.
    Vakakis, Alexander F.
    Starosvetsky, Yuli
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 1, PTS A AND B, 2012, : 479 - +
  • [3] Periodic Traveling Waves in Diatomic Granular Chains
    Betti, Matthew
    Pelinovsky, Dmitry E.
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (05) : 689 - 730
  • [4] Periodic Traveling Waves in Diatomic Granular Chains
    Matthew Betti
    Dmitry E. Pelinovsky
    Journal of Nonlinear Science, 2013, 23 : 689 - 730
  • [5] Strongly nonlinear traveling waves in granular dimer chains
    Jayaprakash, K. R.
    Vakakis, Alexander F.
    Starosvetsky, Yuli
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 39 (1-2) : 91 - 107
  • [6] Generalized instability of periodic traveling waves in anharmonic monatomic chains
    RodriguezAchach, M
    Perez, G
    PHYSICS LETTERS A, 1997, 233 (4-6) : 383 - 390
  • [7] STABILITY OF PERIODIC TRAVELING WAVES FOR NONLINEAR DISPERSIVE EQUATIONS
    Hur, Vera Mikyoung
    Johnson, Mathew A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3528 - 3554
  • [8] The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence
    Wu, Weixin
    Teng, Zhidong
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [9] Traveling waves in chains of pendula
    Saadatpour, Assieh
    Levi, Mark
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 244 (01) : 68 - 73
  • [10] Highly nonlinear solitary waves in periodic dimer granular chains
    Porter, Mason A.
    Daraio, Chiara
    Herbold, Eric B.
    Szelengowicz, Ivan
    Kevrekidis, P. G.
    PHYSICAL REVIEW E, 2008, 77 (01):