Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain

被引:2
|
作者
Gomez, Igor [1 ,2 ]
Molina, Sergio [1 ,2 ]
Jose Galiana-Merino, Juan [3 ,4 ]
Jose Estrela, Maria [5 ]
Caselles, Vicente [6 ]
机构
[1] Univ Alicante, Fac Sci, Dept Appl Phys, Alicante 03690, Spain
[2] Univ Alicante, Multidisciplinary Inst Environm Studies Mies Ramo, Alicante 03690, Spain
[3] Univ Alicante, Dept Phys Syst Engn & Signal Theory, Alicante 03690, Spain
[4] Univ Alicante, Univ Inst Phys Appl Sci & Technol, Alicante 03690, Spain
[5] Univ Valencia, Fac Geog & Hist, Dept Geog, Valencia 46010, Spain
[6] Univ Valencia, Fac Phys, Earth Phys & Thermodynam Dept, Valencia 46100, Spain
关键词
WRF model; Noah; Noah-MP; land surface models; surface fluxes; land surface-atmosphere interactions; numerical weather prediction; LAND-SURFACE MODEL; MP; SCHEMES; SYSTEM; PRECIPITATION; SENSITIVITY; ENERGY; RAMS;
D O I
10.3390/su132011399
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (beta factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball-Berry and Jarvis), and two options for surface layer drag coefficients (Monin-Obukhov and Chen97 scheme). Considering the beta factor schemes, CLM and SSiB-type beta factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin-Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin-Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.</p>
引用
收藏
页数:17
相关论文
共 3 条
  • [1] The impact of atmospheric conditions on the sustainability of a PV system in a semi-arid region: A case study from South Africa
    Hertzog, Pierre E.
    Swart, Arthur James
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [2] Daytime boundary layer behavior over eastern region (per-humid climate) and western regions (semi-arid climate) of India: a case study
    Kumar, Manoj
    Kumar, Anil
    Mallik, Chinmay
    Mahanti, N. C.
    Shekh, A. M.
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2011, 111 (1-2) : 55 - 64
  • [3] Daytime boundary layer behavior over eastern region (per-humid climate) and western regions (semi-arid climate) of India: a case study
    Manoj Kumar
    Anil Kumar
    Chinmay Mallik
    N. C. Mahanti
    A. M. Shekh
    Meteorology and Atmospheric Physics, 2011, 111 : 55 - 64