Risk assessment parameters are needed to assess the contribution of phosphorus (P) losses from soil to surface water, and the effectiveness of nutrient and land management strategies for the reduction of P loss. These parameters need to take into account the large temporal and spatial variation in P transfer from individual fields arising from (a) changing but predictable factors such as land use, soil P status, P application rates, forms and ways of fertilization and spreading, (b) predictable but inherent factors such as soil type, soil dispersivity, slope and hydrological routing, and (c) unpredictable weather factors such as rainfall amount and intensity. In most situations, water transport is the driving force of P loss from agricultural land to surface water. Therefore, the hydrological pathways determine to a large extent the relevance of these different factors. Over the last decade several soil P tests have been proposed as a first step to link field conditions to risk of P loss. The major reason is that these soil P tests are also meaningful in discussions with farmers. Recently, more complex P loss risk parameters have been derived based on different approaches. However, the scope and purposes of these P loss risk parameters vary remarkably. Finally, there is a need to evaluate the usefulness of new P tests that can be used as an indicator of P loss risk, e.g. in relation to monitoring purposes. The implementation of the EU Water Framework Directive will increase this need. In this paper, the practicable applicability of P parameters for risk assessment is discussed in relation to purpose, scale (from field, farm to catchment), effectiveness, sensibility etc. Furthermore, a conceptual framework for P indicators is presented and evaluated, based on the outcome of the presentations and the discussions in Zurich.