Optimization of Centrifugal Impeller Using Evolutionary Strategies and Artificial Neural Networks

被引:0
|
作者
Meier, Rene [1 ]
Joos, Franz [1 ]
机构
[1] Univ Fed Armed Forces Hamburg, Helmut Schmidt Univ, Lab Turbo Machinery, D-22043 Hamburg, Germany
关键词
Artificial neural networks; Centrifugal impeller; Evolutionary strategies; Resilient backpropagation;
D O I
10.1007/978-3-642-01044-6_65
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to optimize turbo machine components it is necessary to describe the behaviour of multimodal objective functions (OF). Instead very time-consuming evaluations using a three-dimensional Navier-Stokes solver have to be performed to get the characteristics of these OF. In this study an Artificial Neural Network (ANN) is considered to use it as a performance predictor with the view to replace the evaluation of the objective function to speed up the optimization process.
引用
收藏
页码:713 / 721
页数:9
相关论文
共 50 条
  • [1] OPTIMIZATION OF A CENTRIFUGAL IMPELLER USING EVOLUTIONARY ALGORITHMS
    Bartold, Andreas
    Joos, Franz
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 6, PT A, 2008, : 2471 - 2480
  • [2] MULTIOBJECT OPTIMIZATION OF A CENTRIFUGAL IMPELLER USING EVOLUTIONARY ALGORITHMS
    Li JunInstitute of Turbomachinery
    [J]. Chinese Journal of Mechanical Engineering, 2004, (03) : 389 - 393
  • [3] Aerodynamic design optimization of a centrifugal compressor impeller based on an artificial neural network and genetic algorithm
    Ibaraki, S.
    Van den Braembussche, R.
    Verstraete, T.
    Alsalihi, Z.
    Sugimoto, K.
    Tomita, I.
    [J]. 11TH INTERNATIONAL CONFERENCE ON TURBOCHARGERS AND TURBOCHARGING, 2014, : 65 - 77
  • [4] Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm
    Derakhshan, Shahram
    Pourmahdavi, Maryam
    Abdolahnejad, Ehsan
    Reihani, Amin
    Ojaghi, Ashkan
    [J]. COMPUTERS & FLUIDS, 2013, 81 : 145 - 151
  • [5] Optimization of Road Networks Using Evolutionary Strategies
    Schweitzer, Frank
    Ebeling, Werner
    Rose, Helge
    Weiss, Olaf
    [J]. EVOLUTIONARY COMPUTATION, 1997, 5 (04) : 419 - 438
  • [6] Artificial Neural Networks as Feature Extractors in Continuous Evolutionary Optimization
    Friess, Stephen
    Tino, Peter
    Xu, Zhao
    Menzel, Stefan
    Sendhoff, Bernhard
    Yao, Xin
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] DESIGN OPTIMIZATION OF A CENTRIFUGAL COMPRESSOR IMPELLER USING RADIAL BASIS NEURAL NETWORK METHOD
    Kim, Jin-Hyuk
    Choi, Jae-Ho
    Kim, Kwang-Yong
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 7, PTS A AND B, 2009, : 443 - 451
  • [8] Artificial neural networks design using evolutionary algorithms
    Castillo, PA
    Arenas, MG
    Castillo-Valdivieso, JJ
    Merelo, JJ
    Prieto, A
    Romero, G
    [J]. ADVANCES IN SOFT COMPUTING: ENGINEERING DESIGN AND MANUFACTURING, 2003, : 43 - 52
  • [9] Evolutionary artificial neural networks
    Brown, AD
    Card, HC
    [J]. 1997 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS I AND II: ENGINEERING INNOVATION: VOYAGE OF DISCOVERY, 1997, : 313 - 317
  • [10] EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS
    Volna, Eva
    [J]. MENDELL 2009, 2009, : 171 - 176