On the role of the ablated mass on the propagation of a laser-generated plasma in an ambient gas

被引:13
|
作者
Spadaro, M. C. [1 ]
Fazio, E. [1 ]
Neri, F. [1 ]
Trusso, S. [2 ]
Ossi, P. M. [3 ]
机构
[1] Univ Messina, Dipartimento Fis & Sci Terra, I-98166 Messina, Italy
[2] CNR, Ist & Proc Chimicofis, I-98158 Messina, Italy
[3] Politecn Milan, Ctr NanoEngn Mat & Surfaces NEMAS, Dipartimento Energia, I-20133 Milan, Italy
关键词
PLUME PROPAGATION; THEORETICAL-MODEL; BUFFER GAS; DEPOSITION; EXPANSION; DYNAMICS; OXYGEN; FILMS;
D O I
10.1209/0295-5075/109/25002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the influence of the ablated mass on the dynamics of a laser-generated plasma expanding in an ambient gas. A laser-generated silver plasma expanding in argon was analysed by fast photo imaging. While keeping all relevant experimental parameters fixed, we changed the ablated mass per pulse, by changing the laser spot area at the target surface. We show that at fixed laser fluence, plasma dynamics undergoes dramatic changes as a function of the ablated mass per pulse. Plasma expansion dynamics is studied using drag, v(2)-drag, mixed propagation and Predtechensky-Mayorov models. Results show that, at a given laser fluence, when a shock wave forms, plasma dynamics is unequivocally determined by the ratio between the ablated mass per pulse and the gas density. Such a dynamics critically affects the kinetic energy at landing and the nanostructure resulting upon mutual assembling on the substrate of the deposited nanoparticles. Thus both the ablated mass per pulse and the laser fluence are to be known to control the nanostructure formation. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Propagation of laser-generated plasma jet in an ambient medium
    Loupias, B.
    Falize, E.
    Gregory, C. D.
    Vinci, T.
    Pikuz, S.
    Waugh, J.
    Koenig, M.
    Ravasio, A.
    Nazarov, W.
    Michaut, C.
    Bouquet, S.
    Kuramitsu, Y.
    Seiichi, D.
    Woolsey, N. C.
    Sakawa, Y.
    Takabe, H.
    Schiavi, A.
    Atzeni, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [2] Modeling of gas dynamics for a laser-generated plasma: Propagation into low-pressure gases
    Le, HC
    Zeitoun, DE
    Parisse, JD
    Sentis, M
    Marine, W
    PHYSICAL REVIEW E, 2000, 62 (03): : 4152 - 4161
  • [3] Laser-generated Cu plasma in vacuum and in nitrogen gas
    Torrisi, L.
    Cutroneo, M.
    Torrisi, A.
    VACUUM, 2020, 178 (178)
  • [4] Contraction of laser-generated plasma channels under ambient electric fields
    Borisov, MF
    Gromovenko, VM
    Lapshin, VA
    Rezunkov, YA
    HIGH-POWER LASERS IN ENERGY ENGINEERING, 2000, 3886 : 175 - 184
  • [5] Mass transfer by laser-generated dislocations
    Pogorelov, A
    Zhuravlev, A
    DIFFUSIONS IN MATERIALS: DIMAT2000, PTS 1 & 2, 2001, 194-1 : 1247 - 1252
  • [6] Time evolution of a laser-generated silver plasma expanding in a background gas
    Neri, F.
    Ossi, P. M.
    Trusso, S.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2010, 165 (6-10): : 559 - 565
  • [7] Characterization of laser-generated silicon plasma
    Torrisi, L.
    Caridi, F.
    Margarone, D.
    Borrielli, A.
    APPLIED SURFACE SCIENCE, 2008, 254 (07) : 2090 - 2095
  • [8] AMBIENT GAS-BREAKDOWN BEHAVIOR IN AN EXCIMER LASER-ABLATED PLASMA
    LEE, YI
    SNEDDON, J
    MICROCHEMICAL JOURNAL, 1994, 50 (03) : 235 - 243
  • [9] Diamond detectors for characterization of laser-generated plasma
    Margarone, D.
    Torrisi, L.
    Cavallaro, S.
    Milani, E.
    Verona-Rinati, G.
    Marinelli, M.
    Tuve, C.
    Laska, L.
    Krasa, J.
    Pfeifer, M.
    Krousky, E.
    Ullshmied, J.
    Ryc, L.
    Mangione, A.
    Mezzasalma, A. M.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2008, 163 (4-6): : 463 - 470
  • [10] Effects of magnetic field on laser-generated plasma
    Torrisi, L.
    Margarone, D.
    Gammino, S.
    Ando, L.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2008, 163 (4-6): : 261 - 269