In order to elucidate the nature of the heterogeneous nucleation, a differential scanning calorimetry (DSC) thermal analysis of pure Fe and Fe-Ni alloys (Ni content: 1.0 to 29.3 mass pct) containing TiN, Al2O3, and Ti2O3 was conducted. Then, special attention was paid to the difference in the phase of the primary crystal nucleated by the triggering effect of a catalyst (nucleating agent). The solidification and transformation mode appearing during cooling in these alloys is classified into three cases: F mode, FA mode, and A mode. The change of modes and the critical undercooling (DeltaT) depend on the kind of catalyst used as well as the chemical cornposition (Ni content). In addition, in spite of the kind of primary crystal, the value of DeltaT is always small in the order of TiN, Al2O3, and Ti2O3. As a matter of fact, only TiN has a practical effect as a catalyst on the triggered nucleation of the primary crystal of the delta phase. None of them has a practical effect on the nucleation of the primary crystal of the gamma phase.