Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions

被引:20
|
作者
Englund, Erin K. [1 ]
Reiter, David A. [2 ,3 ]
Shahidi, Bahar [4 ]
Sigmund, Eric E. [5 ,6 ]
机构
[1] Univ Colorado, Dept Radiol, Anschutz Med Campus, Aurora, CO USA
[2] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Orthoped, Atlanta, GA 30322 USA
[4] Univ Calif San Diego, Dept Orthopaed Surg, San Diego, CA USA
[5] NYU, Grossman Sch Med, Dept Radiol, NYU Langone Hlth, 560 1St Ave, New York, NY 10016 USA
[6] NYU Langone Hlth, Ctr Adv Imaging & Innovat CAI2R, Bernard & Irene Schwarz Ctr Biomed Imaging CBI, New York, NY USA
关键词
intravoxel incoherent motion; diffusion MRI; exercise; skeletal muscle; perfusion; SPIN-LABELING PERFUSION; DIFFUSION-WEIGHTED MRI; IN-VIVO MEASUREMENT; BLOOD-FLOW; CALF MUSCLE; REACTIVE HYPEREMIA; CAPILLARY DENSITY; PSEUDO-DIFFUSION; ABDOMINAL-ORGANS; FUNCTIONAL MRI;
D O I
10.1002/jmri.27875
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm(2) to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average +/- standard deviation of D was 1.46 +/- 0.30 x 10(-3) mm(2)/sec, D* was 29.7 +/- 38.1 x 10(-3) mm(2)/sec, and f was 11.1 +/- 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. Level of Evidence 2 Technical Efficacy Stage 2
引用
收藏
页码:988 / 1012
页数:25
相关论文
共 50 条
  • [1] Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions
    Mesny, Emmanuel
    Leporq, Benjamin
    Chapet, Olivier
    Beuf, Olivier
    [J]. MAGNETIC RESONANCE IMAGING, 2024, 108 : 129 - 137
  • [2] Intravoxel Incoherent Motion Magnetic Resonance Imaging in Partially Nephrectomized Kidneys
    Schneider, Moritz Joerg
    Dietrich, Olaf
    Ingrisch, Michael
    Helck, Andreas
    Winter, Katharina Stella
    Reiser, Maximilian F.
    Staehler, Michael
    Casuscelli, Jozefina
    Notohamiprodjo, Mike
    [J]. INVESTIGATIVE RADIOLOGY, 2016, 51 (05) : 323 - 330
  • [3] Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise
    Filli, Lukas
    Boss, Andreas
    Wurnig, Moritz C.
    Kenkel, David
    Andreisek, Gustav
    Guggenberger, Roman
    [J]. NMR IN BIOMEDICINE, 2015, 28 (02) : 240 - 246
  • [4] Reproducibility of Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessment of Hepatic Steatosis
    Vasquez, J.
    Deng, S.
    Harrison, H.
    Clarke, G.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E561 - E562
  • [5] Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications
    Szubert-Franczak, Aleksandra E.
    Naduk-Ostrowska, Martyna
    Pasicz, Katarzyna
    Podgorska, Joanna
    Skrzynski, Witold
    Cieszanowski, Andrzej
    [J]. POLISH JOURNAL OF RADIOLOGY, 2020, 85 : E624 - E635
  • [6] Intravoxel Incoherent Motion Magnetic Resonance Imaging of Oropharyngeal Cancer in Response to Chemoradiation Therapy
    Ding, Y.
    Fuller, C. D.
    Mohamed, A. S. R.
    Frank, S. J.
    Rosenthal, D. I.
    Colen, R.
    Hazle, J. D.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S75 - S75
  • [7] Intravoxel incoherent motion magnetic resonance imaging in head and neck cancer: A systematic review of the diagnostic and prognostic value
    Noij, Daniel P.
    Martens, Roland M.
    Marcus, J. Tim
    de Bree, Remco
    Leemans, C. Rene
    Castelijns, Jonas A.
    de Jong, Marcus C.
    de Graaf, Pim
    [J]. ORAL ONCOLOGY, 2017, 68 : 81 - 91
  • [8] Intravoxel incoherent motion magnetic resonance imaging of the knee joint in children with juvenile idiopathic arthritis
    Hilbert, Fabian
    Holl-Wieden, Annette
    Sauer, Alexander
    Koestler, Herbert
    Neubauer, Henning
    [J]. PEDIATRIC RADIOLOGY, 2017, 47 (06) : 681 - 690
  • [9] Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas
    Gurney-Champion, Oliver J.
    Froeling, Martijn
    Klaassen, Remy
    Runge, Jurgen H.
    Bel, Arjan
    van Laarhoven, Hanneke W. M.
    Stoker, Jaap
    Nederveen, Aart J.
    [J]. INVESTIGATIVE RADIOLOGY, 2016, 51 (04) : 211 - 220
  • [10] Application of intravoxel incoherent motion (IVIM) magnetic resonance imaging in the evaluation of primitive brain tumours
    Catanese, A.
    Malacario, F.
    Cirillo, L.
    Toni, F.
    Zenesini, C.
    Casolino, D.
    Bacci, A.
    Agati, R.
    [J]. NEURORADIOLOGY JOURNAL, 2018, 31 (01): : 4 - 9