Role of Active Morphing in the Aerodynamic Performance of Flapping Wings in Formation Flight

被引:4
|
作者
Billingsley, Ethan [1 ]
Ghommem, Mehdi [2 ]
Vasconcellos, Rui [3 ]
Abdelkefi, Abdessattar [1 ]
机构
[1] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA
[2] Amer Univ Sharjah, Dept Mech Engn, Sharjah 26666, U Arab Emirates
[3] Sao Paulo State Univ, UNESP, Campus Sao Joao da Boa Vista, BR-01049010 Sao Paulo, Brazil
关键词
flapping wings; formation flight; active morphing; aerodynamic performance; V-shape arrangement; VORTEX-LATTICE METHOD;
D O I
10.3390/drones5030090
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Migratory birds have the ability to save energy during flight by arranging themselves in a V-formation. This arrangement enables an increase in the overall efficiency of the group because the wake vortices shed by each of the birds provide additional lift and thrust to every member. Therefore, the aerodynamic advantages of such a flight arrangement can be exploited in the design process of micro air vehicles. One significant difference when comparing the anatomy of birds to the design of most micro air vehicles is that bird wings are not completely rigid. Birds have the ability to actively morph their wings during the flapping cycle. Given these aspects of avian flight, the objective of this work is to incorporate active bending and torsion into multiple pairs of flapping wings arranged in a V-formation and to investigate their aerodynamic behavior using the unsteady vortex lattice method. To do so, the first two bending and torsional mode shapes of a cantilever beam are considered and the aerodynamic characteristics of morphed wings for a range of V-formation angles, while changing the group size in order to determine the optimal configuration that results in maximum propulsive efficiency, are examined. The aerodynamic simulator incorporating the prescribed morphing is qualitatively verified using experimental data taken from trained kestrel flights. The simulation results demonstrate that coupled bending and twisting of the first mode shape yields the highest propulsive efficiency over a range of formation angles. Furthermore, the optimal configuration in terms of propulsive efficiency is found to be a five-body V-formation incorporating coupled bending and twisting of the first mode at a formation angle of 140 degrees. These results indicate the potential improvement in the aerodynamic performance of the formation flight when introducing active morphing and bioinspiration.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The aerodynamic effects of morphing wings during flapping and gliding flight
    Van Oorschot, Klaassen B.
    Mistick, E.
    Tobalske, B.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2014, 54 : E112 - E112
  • [2] Aerodynamics of Morphing Wings in Flapping and Gliding Flight
    Mistick, E. A.
    Klaassenvanoorschot, B.
    Tobalske, B. W.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2014, 54 : E319 - E319
  • [3] Aerodynamic performance of the flexibility of corrugated dragonfly wings in flapping flight
    Wang, Yuping
    He, Xinyi
    He, Guoyi
    Wang, Qi
    Chen, Longsheng
    Liu, Xiaochen
    ACTA MECHANICA SINICA, 2022, 38 (11)
  • [4] Aerodynamic Characteristics of Bristled Wings in Flapping Flight
    Shen, Tong
    Tu, Zhan
    Li, Daochun
    Kan, Zi
    Xiang, Jinwu
    AEROSPACE, 2022, 9 (10)
  • [5] An aerodynamic model for insect flapping wings in forward flight
    Han, Jong-Seob
    Chang, Jo Won
    Han, Jae-Hung
    BIOINSPIRATION & BIOMIMETICS, 2017, 12 (03)
  • [6] The mechanism of aerodynamic performance enhancement of flapping wings with spanwise active deformation
    Zhang, Tongyun
    Cao, Wei
    Ding, Yanyi
    Wang, Cong
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [7] Aerodynamic Performance of Three Flapping Wings with Unequal Spacing in Tandem Formation
    Chang, Min
    Xu, Ziyi
    Chen, Zengshuang
    Li, Li
    Meng, Xueguang
    JOURNAL OF BIONIC ENGINEERING, 2024, 21 (04) : 1662 - 1676
  • [8] Effects of flexibility on the aerodynamic performance of flapping wings
    Kang, C. -K.
    Aono, H.
    Cesnik, C. E. S.
    Shyy, W.
    JOURNAL OF FLUID MECHANICS, 2011, 689 : 32 - 74
  • [9] Efficiency and Aerodynamic Performance of Bristled Insect Wings Depending on Reynolds Number in Flapping Flight
    O'Callaghan, Felicity
    Sarig, Amir
    Ribak, Gal
    Lehmann, Fritz-Olaf
    FLUIDS, 2022, 7 (02)
  • [10] Aerodynamic effects of corrugation in flapping insect wings in forward flight
    Xueguang Meng
    Mao Sun
    Journal of Bionic Engineering, 2011, 8 : 140 - 150