The Fatou coordinate for parabolic Dulac germs

被引:8
|
作者
Mardesic, P. [1 ]
Resman, M. [2 ]
Rolin, J-P [1 ]
Zupanovic, V [3 ]
机构
[1] Univ Bourgogne, Inst Math & Bourgogne, Dept Mathemat, BP 47 870, F-21078 Dijon, France
[2] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[3] Univ Zagreb, Fac Elect Engn & Comp, Dept Appl Math, Unska 3, Zagreb 10000, Croatia
关键词
Dulac germ; Fatou coordinate; Embedding in a flow; Asymptotic expansion; Transseries; EPSILON-NEIGHBORHOODS; NORMAL FORMS; DIFFEOMORPHISMS; CLASSIFICATION; ORBITS;
D O I
10.1016/j.jde.2018.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated logarithm monomials. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:3479 / 3513
页数:35
相关论文
共 50 条
  • [1] Analytic moduli for parabolic Dulac germs
    Mardesic, P.
    Resman, M.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (03) : 389 - 460
  • [2] Realization of analytic moduli for parabolic Dulac germs
    Mardesic, Pavao
    Resman, Maja
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) : 195 - 249
  • [3] ON A QUESTION OF DULAC AND FATOU
    MARCO, RP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1045 - 1048
  • [4] Holomorphic Motions, Fatou Linearization, and Quasiconformal Rigidity for Parabolic Germs
    Jiang, Yunping
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2009, 58 (02) : 397 - 414
  • [5] Linearization of complex hyperbolic Dulac germs
    Peran, D.
    Resman, M.
    Rolin, J. P.
    Servi, T.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
  • [6] A FATOU TYPE THEOREM FOR COMPLEX MAP GERMS
    Camara, Leonardo
    Scardua, Bruno
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2012, 16 : 256 - 268
  • [7] FORMAL POINCARE-DULAC RENORMALIZATION FOR HOLOMORPHIC GERMS
    Abate, Marco
    Raissy, Jasmin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (05): : 1773 - 1807
  • [8] Fatou Flowers and Parabolic Curves
    Abate, Marco
    [J]. COMPLEX ANALYSIS AND GEOMETRY, KSCV 10, 2015, 144 : 1 - 39
  • [9] Fatou theorems for parabolic equations
    Sweezy, C
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) : 2343 - 2355
  • [10] Fatou Coordinates for Parabolic Dynamics
    Ueda, Tetsuo
    [J]. COMPLEX GEOMETRY AND DYNAMICS, 2015, : 259 - 270