Monocular Depth Estimation with Self-Supervised Learning for Vineyard Unmanned Agricultural Vehicle

被引:6
|
作者
Cui, Xue-Zhi [1 ]
Feng, Quan [1 ]
Wang, Shu-Zhi [2 ]
Zhang, Jian-Hua [3 ]
机构
[1] Gansu Agr Univ, Sch Mech & Elect Engn, Lanzhou 730070, Peoples R China
[2] Northwest Univ Nationalities, Coll Elect Engn, Lanzhou 730030, Peoples R China
[3] Agr Informat Inst CAAS, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
edge computing device; monocular depth estimation; self-supervised learning; vineyard scene;
D O I
10.3390/s22030721
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To find an economical solution to infer the depth of the surrounding environment of unmanned agricultural vehicles (UAV), a lightweight depth estimation model called MonoDA based on a convolutional neural network is proposed. A series of sequential frames from monocular videos are used to train the model. The model is composed of two subnetworks-the depth estimation subnetwork and the pose estimation subnetwork. The former is a modified version of U-Net that reduces the number of bridges, while the latter takes EfficientNet-B0 as its backbone network to extract the features of sequential frames and predict the pose transformation relations between the frames. The self-supervised strategy is adopted during the training, which means the depth information labels of frames are not needed. Instead, the adjacent frames in the image sequence and the reprojection relation of the pose are used to train the model. Subnetworks' outputs (depth map and pose relation) are used to reconstruct the input frame, then a self-supervised loss between the reconstructed input and the original input is calculated. Finally, the loss is employed to update the parameters of the two subnetworks through the backward pass. Several experiments are conducted to evaluate the model's performance, and the results show that MonoDA has competitive accuracy over the KITTI raw dataset as well as our vineyard dataset. Besides, our method also possessed the advantage of non-sensitivity to color. On the computing platform of our UAV's environment perceptual system NVIDIA JETSON TX2, the model could run at 18.92 FPS. To sum up, our approach provides an economical solution for depth estimation by using monocular cameras, which achieves a good trade-off between accuracy and speed and can be used as a novel auxiliary depth detection paradigm for UAVs.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Self-supervised monocular image depth learning and confidence estimation
    Chen, Long
    Tang, Wen
    Wan, Tao Ruan
    John, Nigel W.
    [J]. NEUROCOMPUTING, 2020, 381 : 272 - 281
  • [2] Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy
    Liu, Xingtong
    Sinha, Ayushi
    Unberath, Mathias
    Ishii, Masaru
    Hager, Gregory D.
    Taylor, Russell H.
    Reiter, Austin
    [J]. OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 128 - 138
  • [3] Digging Into Self-Supervised Monocular Depth Estimation
    Godard, Clement
    Mac Aodha, Oisin
    Firman, Michael
    Brostow, Gabriel
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3827 - 3837
  • [4] On the uncertainty of self-supervised monocular depth estimation
    Poggi, Matteo
    Aleotti, Filippo
    Tosi, Fabio
    Mattoccia, Stefano
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3224 - 3234
  • [5] Revisiting Self-supervised Monocular Depth Estimation
    Kim, Ue-Hwan
    Lee, Gyeong-Min
    Kim, Jong-Hwan
    [J]. ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 336 - 350
  • [6] Self-supervised monocular depth estimation in fog
    Tao, Bo
    Hu, Jiaxin
    Jiang, Du
    Li, Gongfa
    Chen, Baojia
    Qian, Xinbo
    [J]. OPTICAL ENGINEERING, 2023, 62 (03)
  • [7] Self-Supervised Learning of Monocular Depth Estimation Based on Progressive Strategy
    Wang, Huachun
    Sang, Xinzhu
    Chen, Duo
    Wang, Peng
    Yan, Binbin
    Qi, Shuai
    Ye, Xiaoqian
    Yao, Tong
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 375 - 383
  • [8] Depth estimation algorithm of monocular image based on self-supervised learning
    Bai L.
    Liu L.-J.
    Li X.-A.
    Wu S.
    Liu R.-Q.
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (04): : 1139 - 1145
  • [9] SENSE: Self-Evolving Learning for Self-Supervised Monocular Depth Estimation
    Li, Guanbin
    Huang, Ricong
    Li, Haofeng
    You, Zunzhi
    Chen, Weikai
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 439 - 450
  • [10] Self-supervised learning monocular depth estimation from internet photos
    Lin, Xiaocan
    Li, Nan
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 99