Boundary terms for supergravity and low energy heterotic M-theory

被引:22
|
作者
Moss, IG [1 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
D O I
10.1016/j.nuclphysb.2005.09.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This paper considers eleven-dimensional supergravity on a manifold with boundary and the theories related to low energy heterotic M-theory, in which the matter is confined to the boundary. New low energy actions and boundary conditions on supergravity fields are derived. Previous problems with infinite constants in the action are overcome. The new boundary conditions are shown to be consistent with supersymmetry, and their role in the ten-dimensional reduction and gaugino condensation is briefly discussed. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:179 / 202
页数:24
相关论文
共 50 条
  • [1] Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary
    Moss, Ian G.
    Omotani, John T.
    Saffin, Paul M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [2] Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary
    Ian G. Moss
    John T. Omotani
    Paul M. Saffin
    [J]. Journal of High Energy Physics, 2011
  • [3] Boundary terms for eleven-dimensional supergravity and M-theory
    Moss, IG
    [J]. PHYSICS LETTERS B, 2003, 577 (1-2) : 71 - 75
  • [4] Higher order terms in an improved heterotic M-theory
    Moss, Ian G.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [5] Balancing the vacuum energy in heterotic M-theory
    Ahmed, Nasr
    Moss, Ian G.
    [J]. NUCLEAR PHYSICS B, 2010, 833 (1-2) : 133 - 152
  • [6] Supergravity and M-theory
    Bernard de Wit
    Maaike van Zalk
    [J]. General Relativity and Gravitation, 2009, 41 : 757 - 784
  • [7] Supergravity and M-theory
    de Wit, Bernard
    van Zalk, Maaike
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (04) : 757 - 784
  • [8] Lectures on heterotic M-theory
    Ovrut, BA
    [J]. STRINGS, BRANES AND EXTRA DIMENSIONS, 2004, : 359 - 406
  • [9] Moduli stabilization in heterotic M-theory
    Correia, Filipe Paccetti
    Schmidt, Michael G.
    [J]. NUCLEAR PHYSICS B, 2008, 797 (1-2) : 243 - 267
  • [10] Moduli as inflatons in heterotic M-theory
    Barreiro, T
    de Carlos, B
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (03):