A Bayesian formulation for 3D articulated upper body segmentation and tracking from dense disparity maps

被引:0
|
作者
Cavin, RD [1 ]
Nefian, AV [1 ]
Goel, N [1 ]
机构
[1] Intel Corp, Microprocessor Res Labs, Santa Clara, CA 95051 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a Bayesian network for 3D articulated upper body segmentation and tracking from video sequences for which both color and depth information are available. In our upper body model the joints are represented as the parent nodes of the body components nodes which include the head, torso or arms. The upper body components are modeled using a set of planar, linear and Gaussian density functions. The model described in this paper segments and tracks accurately the upper body in different illumination conditions and in the presence of partial occlusions and self occlusions. In addition the current approach allows for automatic segmentation of the upper body without any human intervention allowing for further use of the system in hand gesture or human activity recognition.
引用
下载
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [1] Estimation and segmentation of a dense disparity map for 3D reconstruction
    Rziza, M
    Tamtaoui, A
    Morin, L
    Aboutajdine, D
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 2219 - 2222
  • [2] Sensor fusion for 3D human body tracking with an articulated 3D body model
    Knoop, Steffen
    Vacek, Stefan
    Dillmann, Ruediger
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 1686 - +
  • [3] A Study of Stochastic Algorithms for 3D Articulated Human Body Tracking
    Saini, Sanjay
    Rambli, Dayang Rohaya Bt Awang
    Sulaiman, Suziah Bt
    Zakaria, M. Nordin B.
    2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 84 - 89
  • [4] Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects
    Katz, Dov
    Kazemi, Moslem
    Bagnell, J. Andrew
    Stentz, Anthony
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5003 - 5010
  • [5] 3D camera tracking from disparity images
    Kim, K
    Woo, W
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 1381 - 1388
  • [6] Fusion of 2d and 3d sensor data for articulated body tracking
    Knoop, Steffen
    Vacek, Stefan
    Dillmann, Ruediger
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (03) : 321 - 329
  • [7] Geometrically Consistent Plane Extraction for Dense Indoor 3D Maps Segmentation
    Pham, Trung T.
    Eich, Markus
    Reid, Ian
    Wyeth, Gordon
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4199 - 4204
  • [8] Deep Learning Methods for Semantic Segmentation of Dense 3D SLAM Maps
    Pei Yingjian
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 764 - 767
  • [9] Deep Learning Methods for Semantic Segmentation of Dense 3D SLAM Maps
    Pei Yingjian
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : P97 - P97
  • [10] Vehicle Detection and Tracking using Mean Shift Segmentation on Semi-Dense Disparity Maps
    Lefebvre, Sebastien
    Ambellouis, Sebastien
    2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2012, : 855 - 860