Sharp bounds for the valence of certain harmonic polynomials

被引:0
|
作者
Geyer, Lukas [1 ]
机构
[1] Montana State Univ, Dept Math, Bozeman, MT 59717 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Khavinson and Swiatek, (2002) it was proved that harmonic polynomials z - <(p(z))over bar>, where p is a holomorphic polynomial of degree n > 1, have at most 3n- 2 complex zeros. We show that this bound is sharp for all n by proving a conjecture of Sarason and Crofoot about the existence of certain extremal polynomials p. We also count the number of equivalence classes of these polynomials.
引用
收藏
页码:549 / 555
页数:7
相关论文
共 50 条
  • [1] SHARP BOUNDS FOR HARMONIC POLYNOMIALS
    ARMITAGE, DH
    KURAN, U
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 42 : 475 - 488
  • [2] The valence of harmonic polynomials
    Wilmshurst, AS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2077 - 2081
  • [3] Sharp bounds for harmonic numbers
    Guo, Bai-Ni
    Qi, Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 991 - 995
  • [4] Bounds for certain harmonic sums
    English, BJ
    Rousseau, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 206 (02) : 428 - 441
  • [5] SHARP BOUNDS FOR TRIGONOMETRIC POLYNOMIALS IN TWO VARIABLES
    Alzer, Horst
    Shi, Xiquan
    ANALYSIS AND APPLICATIONS, 2009, 7 (04) : 341 - 350
  • [6] Sharp bounds on the ranks of negativity of certain sums
    Torben Maack Bisgaard
    Proceedings Mathematical Sciences, 2008, 118 : 321 - 350
  • [7] Sharp bounds on the ranks of negativity of certain sums
    Bisgaard, Torben Maack
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (03): : 321 - 350
  • [8] SHARP BOUNDS FOR THE PSI FUNCTION AND HARMONIC NUMBERS
    Batir, Necdet
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 917 - 925
  • [9] On the number of zeros of certain harmonic polynomials
    Khavinson, D
    Swiatek, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 409 - 414
  • [10] Sharp upper and lower bounds for the moments of Bernstein polynomials
    Adell, Jose A.
    Bustamante, Jorge
    Quesada, Jose M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 723 - 732