A toy Monte Carlo simulation for the transverse polarization of high-energy electron beams

被引:4
|
作者
Chen, S. H. [1 ,2 ]
Huang, Y. S. [1 ,3 ]
Chen, Y. [3 ]
Duan, Z. [1 ]
Lou, X. C. [1 ,2 ,4 ]
Lan, X. F. [5 ]
Ruan, M. Q. [1 ]
Si, M. Y. [1 ,2 ]
Tang, G. Y. [1 ]
Wang, Y. W. [1 ]
Wang, P. C. [1 ]
Zhang, J. Y. [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Sun Yat Sen Univ, Sch Sci, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China
[5] China West Normal Univ, Sch Phys & Astron, 1 Shida Rd, Nancong 637009, Peoples R China
基金
中国国家自然科学基金;
关键词
Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Polarimeters; Polarisation; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators; synchrotrons); PRECISION-MEASUREMENT; POLARIMETER;
D O I
10.1088/1748-0221/17/08/P08005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Transversely-polarized beams are heuristic to the mechanism of CP violation and explore new physics. Besides, the transverse-polarization monitoring is a key point for the beam energy calibration by the resonant depolarization technique. In the article, the transverse polarization measurement of a high-energy electron beam is performed by Monte Carlo simulation on the circular electron-positron collider. The principle based on the Compton back-scattering combining a deflection magnetic field is discussed in detail. The physical presentation of the analyzing power is used to fit the asymmetric distribution of scattered electrons, which is proportional to the transverse polarization. Furthermore, we develop an efficient algorithm that obtain this analyzing power function and use different strategies to measure the transverse polarization for cross-check. Our measurement method is theoretically suitable with a statistical error 1% within few tens of seconds in Z pole on the circular electron-positron collider. The total systematic uncertainties are controlled to be about 0.6% related to the magnetic field, the drift distance, the laser polarization, the beam energy spread and the related uncertainties of a position sensitive detector.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Monte Carlo simulation of high-energy electron beam lithography process
    Pan, Jiang-Yong
    Zhou, Zai-Fa
    Gan, Qi
    Xu, Wen-Qin
    [J]. 2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, : 622 - 626
  • [2] Monte Carlo simulation of high-energy electron beam exposure in resist
    Song, HY
    Zhang, YL
    Wei, Q
    Kong, XD
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2005, 29 (12): : 1219 - 1224
  • [3] Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code
    Panettieri, Vanessa
    Duch, Maria Amor
    Jornet, Nuria
    Ginjaume, Merce
    Carrasco, Pablo
    Badal, Andreu
    Ortega, Xavier
    Ribas, Montserrat
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (01): : 303 - 316
  • [4] Monte Carlo simulation of transverse electron focusing
    Hornsey, RI
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (02) : 832 - 841
  • [5] Backscatter towards the monitor ion chamber in high-energy photon and electron beams: charge integration versus Monte Carlo simulation
    Verhaegen, F
    Symonds-Tayler, R
    Liu, HH
    Nahum, AE
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (11): : 3159 - 3170
  • [6] Analysis on High-energy Physical Problems in Monte Carlo Simulation
    Sun Bao-guang
    Wang Xiao-feng
    [J]. Applied Decisions in Area of Mechanical Engineering and Industrial Manufacturing, 2014, 577 : 762 - 766
  • [7] MONTE-CARLO TECHNIQUE FOR SIMULATION OF HIGH-ENERGY ELECTRONS
    NEDJALKOV, M
    VITANOV, P
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1991, 10 (04) : 525 - 530
  • [8] Monte Carlo Simulations and Experimental Validation of Rapid Dose Delivery with Very High-Energy Electron Beams
    Bazalova, M.
    Maxim, P.
    Tantawi, S.
    Colby, E.
    Koong, A.
    Loo, B. W.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3944 - 3944
  • [9] Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target
    Renoud, R
    Mady, F
    Ganachaud, JP
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (02) : 231 - 247
  • [10] Monte Carlo simulation of high-energy electron transport in silicon: Is there a short-cut to happiness?
    Fischetti, MV
    Laux, SE
    Crabbe, E
    [J]. HOT CARRIERS IN SEMICONDUCTORS, 1996, : 475 - 480