Detecting machine chatter using audio data and machine learning

被引:10
|
作者
Kvinevskiy, Ilarion [1 ]
Bedi, Sanjeev [1 ]
Mann, Stephen [2 ]
机构
[1] Univ Waterloo, Dept Mech & Mech Engn, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Cheriton Sch Comp Sci, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CNC machining; Chatter; Machine learning;
D O I
10.1007/s00170-020-05571-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method for detecting chatter in CNC machining. Our method uses machining learning to train a classifier to determine the chatter threshold, and we use an autoencoder to reduce the dimensionality of the data. We test our method on machining audio data, and successfully detect chatter in the validation data. Our method is amenable to use on the shop floor, as a machinist using our method needs only to classify audio as chatter and non-chatter.
引用
收藏
页码:3707 / 3716
页数:10
相关论文
共 50 条
  • [1] Detecting machine chatter using audio data and machine learning
    Ilarion Kvinevskiy
    Sanjeev Bedi
    Stephen Mann
    [J]. The International Journal of Advanced Manufacturing Technology, 2020, 108 : 3707 - 3716
  • [2] Chatter Classification in Turning using Machine Learning and Topological Data Analysis
    Khasawneh, Firas A.
    Munch, Elizabeth
    Perea, Jose A.
    [J]. IFAC PAPERSONLINE, 2018, 51 (14): : 195 - 200
  • [3] Detecting Mislabeled Data Using Supervised Machine Learning Techniques
    Poel, Mannes
    [J]. AUGMENTED COGNITION: NEUROCOGNITION AND MACHINE LEARNING, AC 2017, PT I, 2017, 10284 : 571 - 581
  • [4] Detecting Anomalies in Financial Data Using Machine Learning Algorithms
    Bakumenko, Alexander
    Elragal, Ahmed
    [J]. SYSTEMS, 2022, 10 (05):
  • [5] Utilizing Machine Learning for Detecting Harmful Situations by Audio and Text
    Allouch, Merav
    Mansbach, Noa
    Azaria, Amos
    Azoulay, Rina
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [6] Machine Learning for Detecting Anomalies in SAR Data
    Haitman, Yuval
    Berkovich, Itay
    Havivi, Shiran
    Maman, Shimrit
    Blumberg, Dan G.
    Rotman, Stanley R.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2019,
  • [7] Machine Learning for Detecting Data Exfiltration: A Review
    Sabir, Bushra
    Ullah, Faheem
    Babar, M. Ali
    Gaire, Raj
    [J]. ACM COMPUTING SURVEYS, 2022, 54 (03)
  • [8] Detecting Keratoconus From Corneal Imaging Data Using Machine Learning
    Lavric, Alexandru
    Popa, Valentin
    Takahashi, Hidenori
    Yousefi, Siamak
    [J]. IEEE ACCESS, 2020, 8 : 149113 - 149121
  • [9] Detecting Data Injection Attacks in ROS Systems using Machine Learning
    Antunes, Rodrigo Abrantes
    Dalmazo, Bruno L.
    Drews-Jr, Paulo L. J.
    [J]. 2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE), 2022, : 223 - 228