Activity-driven fluctuations in living cells

被引:93
|
作者
Fodor, E. [1 ]
Guo, M. [2 ]
Gov, N. S. [3 ]
Visco, P. [1 ]
Weitz, D. A. [2 ]
van Wijland, F. [1 ]
机构
[1] Univ Paris Diderot, CNRS, Lab Mat & Syst Complexes, UMR 7057,P7, F-75205 Paris 13, France
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
COLLOIDAL GLASS-TRANSITION; VISCOELASTIC MODULI; COMPLEX FLUIDS; ACTIN; MECHANICS; SUBDIFFUSION; CYTOPLASM; DIFFUSION; FILAMENTS; DYNAMICS;
D O I
10.1209/0295-5075/110/48005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Activity-driven clock design
    Farrahi, AH
    Chen, CH
    Srivastava, A
    Téllez, G
    Sarrafzadeh, M
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2001, 20 (06) : 705 - 714
  • [2] The Neuronal Activity-Driven Transcriptome
    Benito, Eva
    Barco, Angel
    [J]. MOLECULAR NEUROBIOLOGY, 2015, 51 (03) : 1071 - 1088
  • [3] The Neuronal Activity-Driven Transcriptome
    Eva Benito
    Angel Barco
    [J]. Molecular Neurobiology, 2015, 51 : 1071 - 1088
  • [4] Temporal percolation in activity-driven networks
    Starnini, Michele
    Pastor-Satorras, Romualdo
    [J]. PHYSICAL REVIEW E, 2014, 89 (03)
  • [5] Activity-driven postsynaptic translocation of CaMKII
    Merrill, MA
    Chen, YC
    Strack, S
    Hell, JW
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2005, 26 (12) : 645 - 653
  • [6] Consensus Over Activity-Driven Networks
    Zino, Lorenzo
    Rizzo, Alessandro
    Porfiri, Maurizio
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (02): : 866 - 877
  • [7] Activity-driven synthesis of state machines
    Hennicker, Rolf
    Knapp, Alexander
    [J]. FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, PROCEEDINGS, 2007, 4422 : 87 - +
  • [8] Opinion dynamics in activity-driven networks
    Li, Dandan
    Han, Dun
    Ma, Jing
    Sun, Mei
    Tian, Lixin
    Khouw, Timothy
    Stanley, H. Eugene
    [J]. EPL, 2017, 120 (02)
  • [9] On Evolutionary Vaccination Game in Activity-Driven Networks
    Han, Dun
    Li, Xiang
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (01) : 142 - 152
  • [10] A study of epidemic spreading on activity-driven networks
    Zou, Yijiang
    Deng, Weibing
    Li, Wei
    Cai, Xu
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (08):