Using genetic algorithms to find technical trading rules

被引:407
|
作者
Allen, F [1 ]
Karjalainen, R
机构
[1] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
[2] Merrill Lynch & Co Inc, Mercury Asset Management, London EC4R 9AS, England
基金
芬兰科学院; 美国国家科学基金会;
关键词
trading rules; genetic algorithms; excess returns;
D O I
10.1016/S0304-405X(98)00052-X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We use a genetic algorithm to learn technical trading rules for the S&P 500 index using daily prices from 1928 to 1995. After transaction costs, the rules do not earn consistent excess returns over a simple buy-and-hold strategy in the out-of-sample test periods. The rules are able to identify periods to be in the index when daily returns are positive and volatility is low and out when the reverse is true. These latter results can largely be explained by low-order serial correlation in stock index returns. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:245 / 271
页数:27
相关论文
共 50 条
  • [1] USING GENETIC ALGORITHMS TO FIND TECHNICAL TRADING RULES
    ALLEN, F
    KARJALAINEN, R
    [J]. JOURNAL OF FINANCE, 1995, 50 (03): : 945 - 946
  • [2] Using neuro fuzzy to find price-quantity based technical trading rules
    Lin, CS
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1116 - 1119
  • [3] LARG: Loss Avoidance Technical Trading Rules using Genetic Algorithm
    Yodphet, Suriya
    Rimcharoen, Sunisa
    Leelathakul, Nutthanon
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2016, : 33 - 38
  • [4] Are trading rules based on genetic algorithms profitable?
    Matilla-García, M
    [J]. APPLIED ECONOMICS LETTERS, 2006, 13 (02) : 123 - 126
  • [5] Evolving Profitable Trading Rules with Genetic Algorithms
    Shin, Kyung-shik
    Kim, Kyoung-jae
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (08): : 3313 - 3321
  • [6] Optimization of technical trading strategy using Split Search Genetic Algorithms
    Tsang, R
    Lajbcygier, P
    [J]. COMPUTATIONAL FINANCE 1999, 2000, : 369 - 386
  • [7] Discovering financial technical trading rules using genetic programming with lambda abstraction
    Yu, T
    Chen, SH
    Kuo, TW
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE II, 2005, 8 : 11 - 30
  • [8] Parallel genetic algorithms for stock market trading rules
    Strassburg, Janko
    Gonzalez-Martel, Christian
    Alexandrov, Vassil
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1306 - 1313
  • [9] An intelligent hybrid trading system for discovering trading rules for the futures market using rough sets and genetic algorithms
    Kim, Youngmin
    Ahn, Wonbin
    Oh, Kyong Joo
    Enke, David
    [J]. APPLIED SOFT COMPUTING, 2017, 55 : 127 - 140
  • [10] Predictability in bond returns using technical trading rules
    Shynkevich, Andrei
    [J]. JOURNAL OF BANKING & FINANCE, 2016, 70 : 55 - 69