Tensor Nuclear Norm-Based Low-Rank Approximation With Total Variation Regularization

被引:54
|
作者
Chen, Yongyong [1 ]
Wang, Shuqin [2 ]
Zhou, Yicong [1 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
关键词
Low-rank tensor approximation; tensor nuclear norm; hyper total variation; spatial-spectral total variation; image denoising; FACTORIZATION;
D O I
10.1109/JSTSP.2018.2873148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Some existing low-rank approximation approaches either need to predefine the rank values (such as the matrix/tensor factorization-based methods) or fail to consider local information of data (e.g., spatial or spectral smooth structure). To overcome these drawbacks, this paper proposes a new model called the tensor nuclear norm-based low-rank approximation with total variation regularization (TLR-TV) for color and multispectral image denoising. TLR-TV uses the tensor nuclear norm to encode the global low-rank prior of tensor data and the total variation regularization to preserve the spatial-spectral continuity in a unified framework. Including the hyper total variation (HTV) and spatial-spectral total variation (SSTV), we propose two TLR-TV-based algorithms, namely TLR-HTV and TLR-SSTV. Using the alternating direction method of multiplier, we further propose two simple algorithms to solve TLR-HTV and TLR-SSTV. Extensive experiments on simulated and real-world noisy images demonstrate that the proposed TLR-HTV and TLR-SSTV outperform the state-of-the-art methods in color and multispectral image denoising in terms of quantitative and qualitative evaluations.
引用
收藏
页码:1364 / 1377
页数:14
相关论文
共 50 条
  • [1] Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
    Qiu, Duo
    Bai, Minru
    Ng, Michael K.
    Zhang, Xiongjun
    [J]. NEUROCOMPUTING, 2021, 435 : 197 - 215
  • [2] Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization
    Xue, Shengke
    Qiu, Wenyuan
    Liu, Fan
    Jin, Xinyu
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2600 - 2605
  • [3] Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization
    Yao, Quanming
    Wang, Yaqing
    Han, Bo
    Kwok, James T.
    [J]. arXiv, 2022,
  • [4] Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization
    Yao, Quanming
    Wang, Yaqing
    Han, Bo
    Kwok, James T.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [5] Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization
    Yao, Quanming
    Wang, Yaqing
    Han, Bo
    Kwok, James T.
    [J]. Journal of Machine Learning Research, 2022, 23
  • [6] Low-Rank Tensor Completion via Tensor Nuclear Norm With Hybrid Smooth Regularization
    Zhao, Xi-Le
    Nie, Xin
    Zheng, Yu-Bang
    Ji, Teng-Yu
    Huang, Ting-Zhu
    [J]. IEEE ACCESS, 2019, 7 : 131888 - 131901
  • [7] Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
    Li Bo
    Luo Xuegang
    Lv Junrui
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] ANISOTROPIC TOTAL VARIATION REGULARIZED LOW-RANK TENSOR COMPLETION BASED ON TENSOR NUCLEAR NORM FOR COLOR IMAGE INPAINTING
    Jiang, Fei
    Liu, Xiao-Yang
    Lu, Hongtao
    Shen, Ruimin
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1363 - 1367
  • [9] ROBUST CBCT RECONSTRUCTION BASED ON LOW-RANK TENSOR DECOMPOSITION AND TOTAL VARIATION REGULARIZATION
    Tian, Xin
    Chen, Wei
    Zhao, Fang
    Li, Bo
    Wang, Zhongyuan
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 330 - 334
  • [10] Truncated γ norm-based low-rank and sparse decomposition
    Yang, Zhenzhen
    Yang, Yongpeng
    Fan, Lu
    Bao, Bing-Kun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (27) : 38279 - 38295