Existence and non-existence results for two-point boundary value problems of higher order

被引:2
|
作者
Minhós, FM [1 ]
Santos, AI [1 ]
机构
[1] Univ Evora, Colegio Luis Antonio Verney, Res Ctr Math & Applicat, CIMA,Dept Math, P-7000 Evora, Portugal
关键词
D O I
10.1142/9789812702067_0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and non-existence results for two point higher order equation u((n))(t) + f(t, u(t), ..., u((n-1))(t)) = s p(t), (1) for f : [0, 1] x R-n -> R and p : [0, 1] -> R+ continuous functions, s a real parameter with the boundary conditions u((i))(0) = 0, for i =0, n-3, a u((n-2))(0) - b u((n-1))(0) = A, (2) c u((n-2))(1) + d u((n-1))(1) = B, with a, c, A, B is an element of R and b, d >= 0 such that a(2) + b > 0 and c(2) + d > 0. The proof makes use of a priori estimates, lower and upper solutions technique and coincidence degree theory.
引用
收藏
页码:249 / 251
页数:3
相关论文
共 50 条