Spatio-Temporal Human-Object Interactions for Action Recognition in Videos

被引:14
|
作者
Escorcia, Victor [1 ]
Carlos Niebles, Juan [1 ]
机构
[1] Univ Norte, Elect & Elect Engn Deparment, Barranquilla, Colombia
关键词
MODELS;
D O I
10.1109/ICCVW.2013.72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new method for representing the dynamics of human-object interactions in videos. Previous algorithms tend to focus on modeling the spatial relationships between objects and actors, but ignore the evolving nature of this relationship through time. Our algorithm captures the dynamic nature of human-object interactions by modeling how these patterns evolve with respect to time. Our experiments show that encoding such temporal evolution is crucial for correctly discriminating human actions that involve similar objects and spatial human-object relationships, but only differ on the temporal aspect of the interaction, e.g. answer phone and dial phone We validate our approach on two human activity datasets and show performance improvements over competing state-of-the-art representations.
引用
收藏
页码:508 / 514
页数:7
相关论文
共 50 条
  • [1] STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in Videos
    Almushyti, Muna
    Li, Frederick W. B.
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3287 - 3294
  • [2] Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos
    Duta, Ionut C.
    Ionescu, Bogdan
    Aizawa, Kiyoharu
    Sebe, Nicu
    [J]. MULTIMEDIA MODELING (MMM 2017), PT I, 2017, 10132 : 365 - 378
  • [3] Spatio-Temporal Interaction Graph Parsing Networks for Human-Object Interaction Recognition
    Wang, Ning
    Zhu, Guangming
    Zhang, Liang
    Shen, Peiyi
    Li, Hongsheng
    Hua, Cong
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4985 - 4993
  • [4] A Spatio-Temporal Deep Learning Approach For Human Action Recognition in Infrared Videos
    Shah, Anuj K.
    Ghosh, Ripul
    Akula, Aparna
    [J]. OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [5] Knowledge-Based Role Recognition by Using Human-Object Interaction and Spatio-Temporal Analysis
    Yang, Chule
    Zeng, Yijie
    Yue, Yufeng
    Siritanawan, Prarinya
    Zhang, Jun
    Wang, Danwei
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 159 - 164
  • [6] Unified Spatio-Temporal Attention Networks for Action Recognition in Videos
    Li, Dong
    Yao, Ting
    Duan, Ling-Yu
    Mei, Tao
    Rui, Yong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 416 - 428
  • [7] Spatio-Temporal Object Recognition
    De Geest, Roeland
    Deboeverie, Francis
    Philips, Wilfried
    Tuytelaars, Tinne
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 : 681 - 692
  • [8] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [9] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    [J]. EURASIP Journal on Image and Video Processing, 2016
  • [10] THORN: Temporal Human-Object Relation Network for Action Recognition
    Guermal, Mohammed
    Dai, Rui
    Bremond, Francois
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3303 - 3309