Systematic Review of Financial Distress Identification using Artificial Intelligence Methods

被引:13
|
作者
Kuiziniene, Dovile [1 ]
Krilavicius, Tomas [1 ]
Damasevicius, Robertas [1 ,2 ]
Maskeliunas, Rytis [1 ]
机构
[1] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania
[2] Vileikos 8, Kaunas, Lithuania
关键词
CORPORATE SOCIAL-RESPONSIBILITY; BANKRUPTCY PREDICTION MODELS; SUPPORT VECTOR MACHINES; GENETIC ALGORITHM; FEATURE-SELECTION; NEURAL-NETWORKS; DIMENSIONALITY REDUCTION; FAILURE PREDICTION; LEARNING-MODELS; CREDIT RISK;
D O I
10.1080/08839514.2022.2138124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study presents a systematic review of 232 studies on various aspects of the use of artificial intelligence methods for identification of financial distress (such as bankruptcy or insolvency). We follow the guidelines of the PRISMA methodology for performing the systematic reviews. The study discusses bankruptcy-related financial datasets, data imbalance, feature dimensionality reduction in financial datasets, financial distress prediction, data pre-processing issues, non-financial indicators, frequently used machine-learning methods, performance evolution metrics, and other related issues of machine-learning-based workflows. The study findings revealed the necessity of data balancing, dimensionality reduction techniques in data preprocessing, and allow researchers to identify new research directions that have not been analyzed yet.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] USING ARTIFICIAL INTELLIGENCE METHODS FOR SYSTEMATIC REVIEW IN HEALTH SCIENCES: A SYSTEMATIC REVIEW
    Blaizot, A.
    Veettil, S. K.
    Saidoung, P.
    Moreno-Garcia, C. F.
    Wiratunga, N.
    Aceves-Martins, M.
    Lai, N. M.
    Chaiyakunapruk, N.
    [J]. VALUE IN HEALTH, 2022, 25 (07) : S517 - S517
  • [2] Using artificial intelligence methods for systematic review in health sciences: A systematic review
    Blaizot, Aymeric
    Veettil, Sajesh K.
    Saidoung, Pantakarn
    Moreno-Garcia, Carlos Francisco
    Wiratunga, Nirmalie
    Aceves-Martins, Magaly
    Lai, Nai Ming
    Chaiyakunapruk, Nathorn
    [J]. RESEARCH SYNTHESIS METHODS, 2022, 13 (03) : 353 - 362
  • [3] Artificial intelligence in acute respiratory distress syndrome: A systematic review
    Rashid, Muhammed
    Ramakrishnan, Manasvini
    Chandran, Viji Pulikkel
    Nandish, Siddeshappa
    Nair, Sreedharan
    Shanbhag, Vishal
    Thunga, Girish
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 131
  • [4] Artificial intelligence techniques in financial trading: A systematic literature review
    Dakalbab, Fatima
    Abu Talib, Manar
    Nasir, Qassim
    Saroufil, Tracy
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (03)
  • [5] Artificial intelligence techniques for financial distress prediction
    Zhong, Junhao
    Wang, Zhenzhen
    [J]. AIMS MATHEMATICS, 2022, 7 (12): : 20891 - 20908
  • [6] Balancing Techniques for Advanced Financial Distress Detection Using Artificial Intelligence
    Kuiziniene, Dovile
    Krilavicius, Tomas
    [J]. ELECTRONICS, 2024, 13 (08)
  • [7] An explainable artificial intelligence approach for financial distress prediction
    Zhang, Zijiao
    Wu, Chong
    Qu, Shiyou
    Chen, Xiaofang
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [8] Confinement Regime Identification Using Artificial Intelligence Methods
    Ratta, G. A.
    Vega, Jesus
    [J]. STATISTICAL LEARNING AND DATA SCIENCES, 2015, 9047 : 337 - 346
  • [9] Efficacy of the methods of age determination using artificial intelligence in panoramic radiographs - a systematic review
    Nino-Sandoval, Tania Camila
    Doria-Martinez, Ana Milena
    Escobar, Ruby Amparo Vasquez
    Sanchez, Elizabeth Llano
    Rojas, Isabella Bermon
    Alvarez, Laura Cristina Vargas
    Mc Cann, David Stephen Fernandez
    Tamara-Patino, Liliana Marcela
    [J]. INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2024, 138 (04) : 1459 - 1496
  • [10] Hotel demand forecasting models and methods using artificial intelligence: A systematic literature review
    Henriques, Henrique
    Pereira, Luis Nobre
    [J]. TOURISM & MANAGEMENT STUDIES, 2024, 20 (03) : 39 - 51