Global estimates of lunar surface chemistry derived from LRO diviner data

被引:18
|
作者
Ma, Ming [1 ]
Li, Bingze [1 ]
Chen, Shengbo [1 ,2 ,3 ]
Lu, Tianqi [4 ]
Lu, Peng [2 ]
Lu, Yu [5 ,6 ]
Jin, Qin [7 ]
机构
[1] Jilin Jianzhu Univ, Sch Surveying & Explorat Engn, Changchun, Peoples R China
[2] Jilin Univ, Sch Geoexplorat Sci & Tech, Changchun, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Comparat Planetol, Hefei, Peoples R China
[4] China Geol Survey, Guangzhou Marine Geol Survey, Guangzhou, Peoples R China
[5] Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing, Peoples R China
[6] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Peoples R China
[7] Macau Univ Sci & Tech, Space Sci Inst, Macau, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Moon; LRO diviner; Christiansen feature; Neural network; Oxide abundances; PROSPECTOR NEUTRON; THORIUM ABUNDANCES; MG-NUMBER; MOON; IRON; TIO2; FEO; MAPS; SPECTRA;
D O I
10.1016/j.icarus.2021.114697
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Lunar surface chemical compositions are essential for understanding the geological evolution of the Moon. One of the mission objectives of Lunar Reconnaissance Orbiter (LRO) Diviner is to obtain the global Christiansen feature (CF) product and then employ it to estimate surface oxide abundances. However, the early CF products are mixed with the information on the viewing geometry, space weathering and compositions and cannot be directly used for surface composition inferences. Recently, the new Normalized to Equatorial Noon (NEN) and OMAT corrected NEN CF (OMATCF) images were calculated and provided for the correction of the viewing geometry and space weathering effects. Therefore in this paper, six Back Propagation Neural Network (BPNN) models are firstly established based on the relationships between the OMATCF values and ground truths of oxide abundances at 48 lunar sampling sites. Then, these BPNN training models are applied to the OMATCF map and six Diviner oxide products with the resolution of 32 pixels/degree (ppd) and the coverage of >99% (70 degrees N/S) are calculated and presented. The comparisons with the previous four results indicate that the prediction accuracy of Diviner oxides products are the highest for SiO2 (1.79), Al2O3 (2.04), MgO (0.88) and CaO (1.10) except for TiO2 (3.17, the second lowest) and FeO (1.93, the second highest). Meanwhile, a satisfactory consistency is observed between Diviner results and Clementine or Chang'E (CE)-1 results. Considering higher spatial resolution (128 ppd) CF product in the future, the Diviner oxides will be the better data sources for lunar geological applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Lunar surface roughness derived from LRO Diviner Radiometer observations
    Bandfield, Joshua L.
    Hayne, Paul
    Williams, Jean-Pierre
    Greenhagen, Benjamin T.
    Paige, David A.
    [J]. ICARUS, 2015, 248 : 357 - 372
  • [2] Global Lunar Christiansen Feature From LRO Diviner Radiometer Observation Data
    Wang, Zian
    Ren, Huazhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [3] Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data
    Bandfield, Joshua L.
    Ghent, Rebecca R.
    Vasavada, Ashwin R.
    Paige, David A.
    Lawrence, Samuel J.
    Robinson, Mark S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
  • [4] Low Lunar Surface Temperature Retrieval From LRO Diviner Radiometer Observation Data
    Wang, Zian
    Ren, Huazhong
    Zhu, Jinshun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [5] Thermophysical Properties of Lunar Irregular Mare Patches From LRO Diviner Radiometer Data
    Byron, B. D.
    Elder, C. M.
    Williams, J-P
    Ghent, R. R.
    Gallinger, C. L.
    Hayne, P. O.
    Paige, D. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (07)
  • [6] Lunar heat flow from the observation of Chinese Chang'E 2 and LRO diviner radiometers
    Zhang, Dan
    Li, Cui
    [J]. AIP ADVANCES, 2024, 14 (09)
  • [7] The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment
    Williams, J. -P.
    Paige, D. A.
    Greenhagen, B. T.
    Sefton-Nash, E.
    [J]. ICARUS, 2017, 283 : 300 - 325
  • [8] Global Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer
    Greenhagen, Benjamin T.
    Lucey, Paul G.
    Wyatt, Michael B.
    Glotch, Timothy D.
    Allen, Carlton C.
    Arnold, Jessica A.
    Bandfield, Joshua L.
    Bowles, Neil E.
    Hanna, Kerri L. Donaldson
    Hayne, Paul O.
    Song, Eugenie
    Thomas, Ian R.
    Paige, David A.
    [J]. SCIENCE, 2010, 329 (5998) : 1507 - 1509
  • [9] The Sinus Iridum surface brightness temperature temporal-spatial distributions by LRO diviner data
    Ma Ming
    Chen Sheng-Bo
    Li Jian
    Yu Yan
    Xiao Yang
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (05) : 628 - 635
  • [10] Lunar Surface Temperature and Emissivity Retrieval From Diviner Lunar Radiometer Experiment Sensor
    Ren, Huazhong
    Nie, Jing
    Dong, Jiaji
    Liu, Rongyuan
    Fa, Wenzhe
    Hu, Ling
    Fan, Wenjie
    [J]. EARTH AND SPACE SCIENCE, 2021, 8 (01)