RSIR: regularized sliced inverse regression for motif discovery

被引:53
|
作者
Zhong, WX
Zeng, P
Ma, P
Liu, JS [1 ]
Zhu, Y
机构
[1] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[3] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[4] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
D O I
10.1093/bioinformatics/bti680
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Identification of transcription factor binding motifs (TFBMs) is a crucial first step towards the understanding of regulatory circuitries controlling the expression of genes. In this paper, we propose a novel procedure called regularized sliced inverse regression (RSIR) for identifying TFBMs. RSIR follows a recent trend to combine information contained in both gene expression measurements and genes' promoter sequences. Compared with existing methods, RSIR is efficient in computation, very stable for data with high dimensionality and high collinearity, and improves motif detection sensitivities and specificities by avoiding inappropriate model specification. Results: We compare RSIR with SIR and stepwise regression based on simulated data and find that RSIR has a lower false positive rate. We also demonstrate an excellent performance of RSIR by applying it to the yeast amino acid starvation data and cell cycle data.
引用
收藏
页码:4169 / 4175
页数:7
相关论文
共 50 条
  • [1] Gaussian Regularized Sliced Inverse Regression
    Caroline Bernard-Michel
    Laurent Gardes
    Stéphane Girard
    [J]. Statistics and Computing, 2009, 19 : 85 - 98
  • [2] Gaussian Regularized Sliced Inverse Regression
    Bernard-Michel, Caroline
    Gardes, Laurent
    Girard, Stephane
    [J]. STATISTICS AND COMPUTING, 2009, 19 (01) : 85 - 98
  • [3] Regularized sliced inverse regression with applications in classification
    Scrucca, Luca
    [J]. DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 59 - 66
  • [4] Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts
    Hernandez, Noslen
    Talavera, Isneri
    Porro, Diana
    Dago, Angel
    [J]. JOURNAL OF CHEMOMETRICS, 2010, 24 (7-8) : 448 - 453
  • [5] CLUSTER-BASED REGULARIZED SLICED INVERSE REGRESSION FOR FORECASTING MACROECONOMIC VARIABLES
    YU Yue
    CHEN Zhihong
    YANG Jie
    [J]. 系统科学与复杂性学报(英文版), 2014, (01) : 75 - 91
  • [6] CLUSTER-BASED REGULARIZED SLICED INVERSE REGRESSION FOR FORECASTING MACROECONOMIC VARIABLES
    Yu Yue
    Chen Zhihong
    Yang Jie
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (01) : 75 - 91
  • [7] Cluster-based regularized sliced inverse regression for forecasting macroeconomic variables
    Yue Yu
    Zhihong Chen
    Jie Yang
    [J]. Journal of Systems Science and Complexity, 2014, 27 : 75 - 91
  • [8] Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression
    Scrucca, Luca
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 438 - 451
  • [9] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    [J]. TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [10] Collaborative sliced inverse regression
    Chiancone, Alessandro
    Girard, Stephane
    Chanussot, Jocelyn
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6035 - 6053