Bioconversion of indene to cis (1S,2R) indandiol and trans (1R,2R) indandiol by Rhodococcus species

被引:50
|
作者
Chartrain, M [1 ]
Jackey, B [1 ]
Taylor, C [1 ]
Sandford, V [1 ]
Gbewonyo, K [1 ]
Lister, L [1 ]
Dimichele, L [1 ]
Hirsch, C [1 ]
Heimbuch, B [1 ]
Maxwell, C [1 ]
Pascoe, D [1 ]
Buckland, B [1 ]
Greasham, R [1 ]
机构
[1] Merck Res Labs, Rahway, NJ 07065 USA
来源
关键词
biotransformation; bioconversion; biocatalysis; indene; indandiol; Crixivan (R); Indinavir; Rhodococcus;
D O I
10.1016/S0922-338X(99)80005-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
cis (1S, 2R) indandiol or trans (1R,2R) indandiol are both potential precursors to (-)-cis (1S,2R)-1-aminoindan-2-ol, a key chiral synthon for Crixivan(R) (Indinavir), a leading HIV protease inhibitor. Enrichment and isolation studies yielded two Rhodococcus sp. strain B 264-1 (MB 5655) and strain I-24 (MA 7205) capable of biotransforming indene to cis (1S,2R) indandiol and trans (IR,2R) indandiol respectively. Isolate MB 5655 was found to have a toluene dioxygenase, while isolate MA 7205 was found to harbor both toluene and naphthalene dioxygenases as well as a naphthalene monoxygenase. When scaled up in a 14-l bioreactor, MB 5655 produced up to 2.0 g/l of cis (1S,2R) indandiol with an enantiomeric excess greater than 99%. MA 7205 cultivated under similar conditions produced up to 1.4 g/l of trans (1R,2R) indandiol with an enantiomeric excess greater than 98%. Process development studies yielded titers greater that 4.0 g/l of cis indandiol for MB 5655. Due to their resistance to indene toxicity and easy cultivation in bioreactors, both Rhodococcus sp. strains appeared as good candidates for future strain engineering and process development work.
引用
收藏
页码:550 / 558
页数:9
相关论文
共 50 条
  • [1] Conversion of indene to cis-(1S),(2R)-indandiol by mutants of Pseudomonas putida F1
    Connors, N
    Prevoznak, R
    Chartrain, M
    Reddy, J
    Singhvi, R
    Patel, Z
    Olewinski, R
    Salmon, P
    Wilson, J
    Greasham, R
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 1997, 18 (06): : 353 - 359
  • [2] A short synthesis of (1S,2R) and (1R,2R)-[1-H-2]-glycerols
    Nieschalk, J
    OHagan, D
    [J]. TETRAHEDRON-ASYMMETRY, 1997, 8 (14) : 2325 - 2330
  • [3] Synthesis of enantiomerically pure trans-(1R,2R)- and cis-(1S,2R)-1-amino-2-indanol by lipase and ω-transaminase
    Yun, H
    Kim, J
    Kinnera, K
    Kim, BG
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2006, 93 (02) : 391 - 395
  • [4] Synthesis of enantiomeric diethyl (1R,2R)- and (1S,2R)-1,2,3-trihydroxypropylphosphonates
    Wróblewski, AE
    Balcerzak, KB
    [J]. TETRAHEDRON, 1998, 54 (24) : 6833 - 6840
  • [5] STEREOCHEMISTRY OF REACTION OF CIS(1S,2R) AND TRANS(1R,2R) 1-PHENYL-1,2-EPOXYPROPANE TOWARDS SATURATED AND ALLYLIC ORGANOMETALLICS
    ABENHAIM, D
    NAMY, JL
    HENRYBAS.E
    [J]. BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1970, (11B): : 82 - &
  • [6] Synthesis of diethyl (1R,2R)- and (1S,2R)-3-acetamido-1,2-dihydroxypropylphosphonates
    Wróblewski, AE
    Balcerzak, KB
    [J]. TETRAHEDRON-ASYMMETRY, 2002, 13 (08) : 845 - 850
  • [7] Synthesis of (1R,2R)- and (1S,2R)-1,2-Epoxy-3-hydroxypropylphosphonates as Analogues of Fosfomycin
    Wroblewski, Andrzej E.
    Szewczyk, Eligia M.
    Bak-Sypien, Irena I.
    [J]. ARCHIV DER PHARMAZIE, 2009, 342 (09) : 521 - 527
  • [8] 1R,2R)-Diaminocyclohexane
    Tokarz, Pawel
    [J]. SYNLETT, 2013, 24 (12) : 1597 - 1598
  • [9] Incorporation of [2H1]-(1R,2R)- and [2H1]-(1S,2R)-glycerols into the antibiotic nucleocidin in Streptomyces calvus
    Feng, Xuan
    Al Maharik, Nawaf
    Bartholome, Axel
    Janso, Jeffrey E.
    Reilly, Usa
    O'Hagan, David
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (38) : 8006 - 8008
  • [10] ENANTIOSPECIFIC SYNTHESES OF VALIOLAMINE AND ITS (1R), (2R), (1R,2R) DIASTEREOMERS FROM (-)-QUINIC ACID
    SHING, TKM
    WAN, LH
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (15): : 1643 - 1645