Multiple principal component analyses and projective clustering

被引:0
|
作者
Kerdprasop, N [1 ]
Kerdprasop, K [1 ]
机构
[1] Suranaree Univ Technol, Sch Comp Engn, Data Engn & Knowledge Discovery Res Unit, Nakhon Ratchasima, Thailand
关键词
D O I
10.1109/DEXA.2005.140
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Projective clustering is a clustering technique for high dimensional data with the inherent sparsity of the data points. To overcome the unreliable measure of similarity among data points in high dimensions, all data points are projected to a lower dimensional subspace. Principal component analysis (PCA) is an efficient method to dimensionality reduction by projecting all points to a lower dimensional subspace so that the information loss is minimized. However, PCA does not handle well the situation that different clusters are formed in different subspaces. We propose a method of multiple principal component analysis for iteratively computing projective clusters. The objective function is designed to determine the subspace associated with each cluster. Some experiments have been carried out to show the effectiveness of the proposed method.
引用
收藏
页码:1132 / 1136
页数:5
相关论文
共 50 条
  • [1] Selecting soil properties for assessment of soil aggregation using principal component and clustering analyses
    Alaboz, Pelin
    SOIL RESEARCH, 2021, 59 (02) : 170 - 178
  • [2] Clustering and disjoint principal component analysis
    Vichi, Maurizio
    Saporta, Gilbert
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 3194 - 3208
  • [3] Principal component analysis and clustering on manifolds
    V. Mardia, Kanti
    Wiechers, Henrik
    Eltzner, Benjamin
    Huckemann, Stephan F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [4] XML clustering by principal component analysis
    Liu, JH
    Wang, JTL
    Hsu, W
    Herbert, KG
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 658 - 662
  • [6] Projective Multiple Kernel Subspace Clustering
    Sun, Mengjing
    Wang, Siwei
    Zhang, Pei
    Liu, Xinwang
    Guo, Xifeng
    Zhou, Sihang
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2567 - 2579
  • [7] Projective Multiple Kernel Subspace Clustering
    Sun, Mengjing
    Wang, Siwei
    Zhang, Pei
    Liu, Xinwang
    Guo, Xifeng
    Zhou, Sihang
    Zhu, En
    IEEE Transactions on Multimedia, 2022, 24 : 2567 - 2579
  • [8] Comparison of Heritability Estimation and Linkage Analysis for Multiple Traits Using Principal Component Analyses
    Liang, Jingjing
    Cade, Brian E.
    Wang, Heming
    Chen, Han
    Gleason, Kevin J.
    Larkin, Emma K.
    Saxena, Richa
    Lin, Xihong
    Redline, Susan
    Zhu, Xiaofeng
    GENETIC EPIDEMIOLOGY, 2016, 40 (03) : 222 - 232
  • [9] EPIDEMIOLOGIC ANALYSES OF SPATIAL CLUSTERING OF BOVINE EPHEMERAL FEVER OUTBREAKS .2. PRINCIPAL COMPONENT ANALYSIS
    OGAWA, T
    ISHIBASHI, K
    IMAMURA, K
    KURASHIGE, S
    INOUE, T
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 1994, 56 (02): : 223 - 226
  • [10] Principal component analyses of potential repository groundwaters
    Sasamoto, H
    Salter, P
    Apted, M
    Yui, M
    SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XXII, 1999, 556 : 575 - 582