Acoustically Driven Stark Effect in Transition Metal Dichalcogenide Monolayers

被引:12
|
作者
Scolfaro, Diego [1 ]
Finamor, Matheus [1 ]
Trinchao, Luca O. [1 ]
Rosa, Barbara L. T. [2 ]
Chaves, Andrey [3 ,4 ]
Santos, Paulo, V [5 ]
Iikawa, Fernando [1 ]
Couto, Odilon D. D., Jr. [1 ]
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, Brazil
[2] Univ Fed Minas Gerais UFMG, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[3] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
[4] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[5] Leibniz Inst Forschungsverbund Berlin eV, Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
基金
巴西圣保罗研究基金会;
关键词
transition metal dichalcogenides; surface acoustic waves; Stark effect; exciton dissociation; dielectric screening; exciton polarizability; trion polarizability; MODULATION; PIEZOELECTRICITY; SEMICONDUCTOR; TRANSPORT; DYNAMICS; EXCITONS; MOS2; SPIN;
D O I
10.1021/acsnano.1c06854
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.
引用
收藏
页码:15371 / 15380
页数:10
相关论文
共 50 条
  • [1] Aging of Transition Metal Dichalcogenide Monolayers
    Gao, Jian
    Li, Baichang
    Tan, Jiawei
    Chow, Phil
    Lu, Toh-Ming
    Koratkar, Nikhil
    [J]. ACS NANO, 2016, 10 (02) : 2628 - 2635
  • [2] Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers
    Rostami, Habib
    Moghaddam, Ali G.
    Asgari, Reza
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (50)
  • [3] Data-driven study of magnetic anisotropy in transition metal dichalcogenide monolayers
    Minch, Peter
    Bhattarai, Romakanta
    Rhone, Trevor David
    [J]. SOLID STATE COMMUNICATIONS, 2023, 371
  • [4] Electric-field-driven exciton vortices in transition metal dichalcogenide monolayers
    Chen, Yingda
    Huang, Yongwei
    Lou, Wenkai
    Cai, Yongyong
    Chang, Kai
    [J]. PHYSICAL REVIEW B, 2020, 102 (16)
  • [5] Valley Magnetization of Transition Metal Dichalcogenide Monolayers
    Magarill, L. I.
    Chaplik, A. V.
    [J]. JETP LETTERS, 2021, 114 (02) : 81 - 84
  • [6] Valley Magnetization of Transition Metal Dichalcogenide Monolayers
    L. I. Magarill
    A. V. Chaplik
    [J]. JETP Letters, 2021, 114 : 81 - 84
  • [7] Phase crossover in transition metal dichalcogenide monolayers on metal substrates
    Zan, Wen-Yan
    Huo, Ju
    Mu, Yue-Wen
    Li, Si-Dian
    [J]. APPLIED SURFACE SCIENCE, 2022, 599
  • [8] Spontaneous exciton dissociation in transition metal dichalcogenide monolayers
    Handa, Taketo
    Holbrook, Madisen
    Olsen, Nicholas
    Holtzman, Luke N.
    Huber, Lucas
    Wang, Hai I.
    Bonn, Mischa
    Barmak, Katayun
    Hone, James C.
    Pasupathy, Abhay N.
    Zhu, Xiaoyang
    [J]. SCIENCE ADVANCES, 2024, 10 (05)
  • [9] Novel Functional Devices of Transition Metal Dichalcogenide Monolayers
    Takenobu, Taishi
    Pu, Jiang
    Li, Lain-Jong
    Iwasa, Yoshihiro
    [J]. 2014 21ST INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2014, : 283 - 286
  • [10] Exciton radiative lifetime in transition metal dichalcogenide monolayers
    Robert, C.
    Lagarde, D.
    Cadiz, F.
    Wang, G.
    Lassagne, B.
    Amand, T.
    Balocchi, A.
    Renucci, P.
    Tongay, S.
    Urbaszek, B.
    Marie, X.
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)