On group gradings on PI-algebras

被引:3
|
作者
Aljadeff, Eli [1 ]
David, Ofir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Graded algebra; Polynomial identity; Codimension growth; GRADED POLYNOMIAL-IDENTITIES; ASSOCIATIVE ALGEBRAS; CODIMENSION GROWTH; EXPONENTIAL-GROWTH; RINGS;
D O I
10.1016/j.jalgebra.2014.12.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there exists a constant K such that for any PI-algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with [G : U] <= exp(W)(K). A G-grading W = circle plus(g is an element of G) (Wg) is said to be nondegenerate if W-g1 W-g2 ... W-gr not equal 0 for any r >= 1 and any r tuple (g(1), g(2),..., g(r)) in G(r). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 424
页数:22
相关论文
共 50 条