In2I: Unsupervised Multi-Image-to-Image Translation Using Generative Adversarial Networks

被引:0
|
作者
Perera, Pramuditha [1 ]
Abavisani, Mahdi [1 ]
Patel, Vishal M. [1 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, 94 Brett Rd, Piscataway, NJ 08854 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In unsupervised image-to-image translation, the goal is to learn the mapping between an input image and an output image using a set of unpaired training images. In this paper, we propose an extension of the unsupervised image-to-image translation problem to multiple input setting. Given a set of paired images from multiple modalities, a transformation is learned to translate the input into a specified domain. For this purpose, we introduce a Generative Adversarial Network (GAN) based framework along with a multi-modal generator structure and a new loss term, latent consistency loss. Through various experiments we show that leveraging multiple inputs generally improves the visual quality of the translated images. Moreover, we show that the proposed method outperforms current state-of-the-art unsupervised image-to-image translation methods.
引用
下载
收藏
页码:140 / 146
页数:7
相关论文
共 50 条
  • [1] Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation
    Tang, Hao
    Xu, Dan
    Sebel, Nicu
    Yan, Yan
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [2] Crossing-Domain Generative Adversarial Networks for Unsupervised Multi-Domain Image-to-Image Translation
    Yang, Xuewen
    Xie, Dongliang
    Wang, Xin
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 374 - 382
  • [3] Text to Image Translation using Generative Adversarial Networks
    Viswanathan, Adithya
    Mehta, Bhavin
    Bhavatarini, M. P.
    Mamatha, H. R.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1468 - 1474
  • [4] Multi-Constraint Adversarial Networks for Unsupervised Image-to-Image Translation
    Saxena, Divya
    Kulshrestha, Tarun
    Cao, Jiannong
    Cheung, Shing-Chi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1601 - 1612
  • [5] Unsupervised Generative Adversarial Network for Plantar Pressure Image-to-Image Translation
    Ahmadian, Mona
    Beheshti, Mohammad T. H.
    Kalhor, Ahmad
    Shirian, Amir
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2580 - 2583
  • [6] Unsupervised image-to-image translation with multiscale attention generative adversarial network
    Wang, Fasheng
    Zhang, Qing
    Zhao, Qianyi
    Wang, Mengyin
    Sun, Fuming
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6558 - 6578
  • [7] Unsupervised Image Generation with Infinite Generative Adversarial Networks
    Ying, Hui
    Wang, He
    Shao, Tianjia
    Yang, Yin
    Zhou, Kun
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14264 - 14273
  • [8] OSAGGAN: one-shot unsupervised image-to-image translation using attention-guided generative adversarial networks
    Huo, Xiaofei
    Jiang, Bin
    Hu, Haotian
    Zhou, Xinjiao
    Zhang, Bolin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3471 - 3482
  • [9] OSAGGAN: one-shot unsupervised image-to-image translation using attention-guided generative adversarial networks
    Xiaofei Huo
    Bin Jiang
    Haotian Hu
    Xinjiao Zhou
    Bolin Zhang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3471 - 3482
  • [10] Joint image-to-image translation with denoising using enhanced generative adversarial networks
    Yan, Lan
    Zheng, Wenbo
    Wang, Fei-Yue
    Gou, Chao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 91