Partial Attention CenterNet for Bottom-Up Human Pose Estimation

被引:0
|
作者
Wu, Jiahua [1 ]
Lee, Hyo Jong [1 ]
机构
[1] Jeonbuk Natl Univ, Div Comp Sci & Engn, Jeonju Si, South Korea
基金
新加坡国家研究基金会;
关键词
Pose estimation; Keypoint detection; Attention module; body branch module;
D O I
10.1109/CSCI54926.2021.00042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The typical bottom-up human pose estimation methods can be divided into two steps, keypoint detection and grouping. The traditional keypoint regression-based methods exploit an effective backbone (like HRNet) and different prediction heads to acquire the body center and body joint. Then they utilize the offset between the body center and body joint to figure out the grouping task. In this paper, we first propose a body branch module and keypoint attention module to improve keypoint detection and keypoint regression. In body branch module, we exploit a multi-branch structure for keypoint detection and keypoint regression. Each branch represents a part of human body. In keypoint attention module, two simple yet reliable pooling layers are adopted to extract the attention areas of different kinds of keypoints. Combining these two modules, we propose a Partial Attention CenterNet for multi-person human pose estimation. The proposed method outperforms the traditional keypoint regression-based methods. Experiments have demonstrated the obvious performance improvements on COCO dataset brought by the introduced components.
引用
收藏
页码:1663 / 1667
页数:5
相关论文
共 50 条
  • [1] Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation
    Luo, Zhengxiong
    Wang, Zhicheng
    Huang, Yan
    Wang, Liang
    Tan, Tieniu
    Zhou, Erjin
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13259 - 13268
  • [2] BalanceHRNet: An effective network for bottom-up human pose estimation
    Li, Yaoping
    Jia, Shuangcheng
    Li, Qian
    [J]. NEURAL NETWORKS, 2023, 161 : 297 - 305
  • [3] Regularizing Vector Embedding in Bottom-Up Human Pose Estimation
    Wang, Haixin
    Zhou, Lu
    Chen, Yingying
    Tang, Ming
    Wang, Jinqiao
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 107 - 122
  • [4] DecenterNet: Bottom-Up Human Pose Estimation Via Decentralized Pose Representation
    Wang, Tao
    Jin, Lei
    Wang, Zhang
    Fan, Xiaojin
    Cheng, Yu
    Teng, Yinglei
    Xing, Junliang
    Zhao, Jian
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1798 - 1808
  • [5] Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
    Geng, Zigang
    Sun, Ke
    Xiao, Bin
    Zhang, Zhaoxiang
    Wang, Jingdong
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14671 - 14681
  • [6] Lightweight HRNet: A Ligtweight Network for Bottom-Up Human Pose Estimation
    Liao, Jinzhen
    Cui, Wenhua
    Tao, Ye
    Shi, Tianwei
    Shen, Lijia
    [J]. ENGINEERING LETTERS, 2024, 32 (03) : 661 - 670
  • [7] Hierarchical Associative Encoding and Decoding for Bottom-Up Human Pose Estimation
    Du, Congju
    Yna, Zengqiang
    Yu, Han
    Yu, Li
    Xiong, Zixiang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1762 - 1775
  • [8] Research on Lightweight and Efficient Bottom-Up Human Pose Estimation Algorithm
    Ma, Sai
    Ge, Haibo
    He, Wenhao
    Cheng, Mengyang
    An, Yu
    [J]. Computer Engineering and Applications, 2024, 60 (18) : 217 - 229
  • [9] A Characteristic Function-based Method for Bottom-up Human Pose Estimation
    Qu, Haoxuan
    Cai, Yujun
    Foo, Lin Geng
    Kumar, Ajay
    Liu, Jun
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13009 - 13018
  • [10] Grouping by Center: Predicting Centripetal Offsets for the Bottom-up Human Pose Estimation
    Jin, Lei
    Wang, Xiaojuan
    Nie, Xuecheng
    Liu, Luoqi
    Guo, Yandong
    Zhao, Jian
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3364 - 3374