Context-specific independencies in hierarchical multinomial marginal models

被引:2
|
作者
Nicolussi, Federica [1 ]
Cazzaro, Manuela [2 ]
机构
[1] Univ Milan, Dept Econ Management & Quantitat Methods, Milan, Italy
[2] Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
来源
STATISTICAL METHODS AND APPLICATIONS | 2020年 / 29卷 / 04期
关键词
Context-specific independence; Ordinal variable; Hierarchical multinomial marginal model; CONTINGENCY-TABLES; GRAPHICAL MODELS;
D O I
10.1007/s10260-019-00503-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on studying the relationships among a set of categorical (ordinal) variables collected in a contingency table. Besides the marginal and conditional (in)dependencies, thoroughly analyzed in the literature, we consider the context-specific independencies holding only in a subspace of the outcome space of the conditioning variables. To this purpose we consider the hierarchical multinomial marginal models and we provide several original results about the representation of context-specific independencies through these models. The theoretical results are supported by an application concerning the innovation degree of Italian enterprises.
引用
收藏
页码:767 / 786
页数:20
相关论文
共 50 条
  • [1] Context-specific independencies in hierarchical multinomial marginal models
    Federica Nicolussi
    Manuela Cazzaro
    [J]. Statistical Methods & Applications, 2020, 29 : 767 - 786
  • [2] Context-specific independencies in stratified chain regression graphical models
    Nicolussi, Federica
    Cazzaro, Manuela
    [J]. BERNOULLI, 2021, 27 (03) : 2091 - 2116
  • [3] A class of smooth models satisfying marginal and context specific conditional independencies
    Colombi, R.
    Forcina, A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 75 - 85
  • [4] Decomposable Context-Specific Models
    Alexandr, Yulia
    Duarte, Eliana
    Vill, Julian
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2024, 8 (02): : 363 - 393
  • [5] hmmm: An R Package for Hierarchical Multinomial Marginal Models
    Colombi, Roberto
    Giordano, Sabrina
    Cazzaro, Manuela
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (11):
  • [6] Context-Specific Nested Effects Models
    Sverchkov, Yuriy
    Ho, Yi-Hsuan
    Gasch, Audrey
    Craven, Mark
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2018, 2018, 10812 : 194 - 210
  • [7] Selection tests for possibly misspecified hierarchical multinomial marginal models
    Colombi, Roberto
    [J]. ECONOMETRICS AND STATISTICS, 2020, 16 : 136 - 147
  • [8] Context-Specific Nested Effects Models
    Sverchkov, Yuriy
    Ho, Yi-hsuan
    Gasch, Audrey
    Craven, Mark
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (03) : 403 - 417
  • [9] Stratified Graphical Models - Context-Specific Independence in Graphical Models
    Nyman, Henrik
    Pensar, Johan
    Koski, Timo
    Corander, Jukka
    [J]. BAYESIAN ANALYSIS, 2014, 9 (04): : 883 - 908
  • [10] Embedding Regression: Models for Context-Specific Description and Inference
    Rodriguez, Pedro L.
    Spirling, Arthur
    Stewart, Brandon M.
    [J]. AMERICAN POLITICAL SCIENCE REVIEW, 2023, 117 (04) : 1255 - 1274