MEROMORPHIC INTEGRABILITY OF THE HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS OF DEGREE-4

被引:0
|
作者
Llibre, Jaume [1 ]
Tian, Yuzhou [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici C, Barcelona 08193, Catalonia, Spain
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Hamiltonian system with 2-degrees of freedom; homogeneous potential of degree-4; meromorphic integrability; Darboux point; POLYNOMIAL INTEGRABILITY; NONEXISTENCE;
D O I
10.3934/dcdsb.2021228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian H = (p(1)(2) + p(2)(2)) /2 + 1/P(q(1) , q(2)), be -2 ing P(q(1) , q(2)) a homogeneous polynomial of degree 4 of one of the follow-ing forms +/- q(1)(4) , 4q13q2 , +/- 6q(1)(2)q(2)(2) , +/- (q(1)(2) +q(2)(2))2 , +/- q(2) (6q(12) - q(2)(2)) , +/- q(2)(2) (6q(1)(2) +q(2)(2)) , q(1)(4) + 6 mu q(1)(2)q(2)(2,) +q(1)(4) + 6 mu q(1)(2)q(2)(2) - q(2)(4) , -q(1)(4) + 6 mu q(1)(2)q(2)(2) + q(2)(4) with mu > -1/3 and mu =6 1/3, and q14 + 6 mu q(1)(2)q(2)(2) + q(2)(4) with mu not equal 6 +/- 1/3. We note that any homogeneous polynomial of degree 4 after a linear change of variables and a rescaling can be writ-ten as one of the previous polynomials. We remark that for the polynomial q(1)(4) + 6 mu q(1)(2) q(2)(2) + q(2)(4) when mu is an element of{-5/3 , -2/3} we only can prove that it has no a polynomial first integral.
引用
收藏
页码:4305 / 4316
页数:12
相关论文
共 50 条
  • [1] Integrability of Hamiltonian systems with homogeneous potentials of degree zero
    Casale, Guy
    Duval, Guillaume
    Maciejewski, Andrzej J.
    Przybylska, Maria
    [J]. PHYSICS LETTERS A, 2010, 374 (03) : 448 - 452
  • [2] Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree -k
    Oliveira, Regilene
    Valls, Claudia
    [J]. PHYSICS LETTERS A, 2016, 380 (46) : 3876 - 3880
  • [3] Analytic integrability of Hamiltonian systems with a homogeneous polynomial potential of degree 4
    Llibre, Jaume
    Mahdi, Adam
    Valls, Claudia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [4] JORDAN OBSTRUCTION TO THE INTEGRABILITY OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS
    Duval, Guillaume
    Maciejewski, Andrzej J.
    [J]. ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) : 2839 - 2890
  • [5] Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree-3
    Llibre, Jaume
    Mandi, Adam
    Valls, Claudia
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (24) : 1928 - 1935
  • [7] Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree-2
    Llibre, Jaume
    Mahdi, Adam
    Valls, Claudia
    [J]. PHYSICS LETTERS A, 2011, 375 (18) : 1845 - 1849
  • [8] Darboux points and integrability analysis of Hamiltonian systems with homogeneous rational potentials
    Studzinski, Michal
    Przybylska, Maria
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 249 : 1 - 15
  • [9] Integrability of Hamiltonian systems with algebraic potentials
    Maciejewski, Andrzej J.
    Przybylska, Maria
    [J]. PHYSICS LETTERS A, 2016, 380 (1-2) : 76 - 82
  • [10] HAMILTONIAN DECOMPOSITION OF CAYLEY-GRAPHS OF DEGREE-4
    BERMOND, JC
    FAVARON, O
    MAHEO, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) : 142 - 153