Strain regulated interlayer coupling in WSe2/WS2 heterobilayer

被引:8
|
作者
Xu, Xiaodan [1 ,2 ,3 ]
Wang, Cong [4 ]
Xiong, Wenqi [5 ]
Liu, Yang [2 ,3 ]
Yang, Donghao [2 ,3 ]
Zhang, Xinzheng [2 ,3 ]
Xu, Jingjun [2 ,3 ]
机构
[1] Yanshan Univ, Sch Sci, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China
[2] Nankai Univ, TEDA Inst Appl Phys, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[3] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[4] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[5] Wuhan Univ, Sch Phys & Technol, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
WSe2; WS2; strain engineering; interlayer coupling; BANDGAP TRANSITION; HETEROSTRUCTURES; MOS2; WS2;
D O I
10.1088/1361-6528/ac3a39
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strain engineering can effectively modify the materials lattice parameters at atomic scale, hence it has become an efficient method for tuning the physical properties of two-dimensional (2D) materials. The study of the strain regulated interlayer coupling is deserved for different kinds of heterostructures. Here, we systematically studied the strain engineering of WSe2/WS2 heterostructures as well as their constituent monolayers. The measured Raman and photoluminescence spectra demonstrate that the strain can evidently modulate the phonon energy and exciton emission of monolayer WSe2 and WS2 as well as the WSe2/WS2 heterostructures. The tensile strain can tune the electronic band structure of WSe2/WS2 heterostructure, as well as enhance the interlayer coupling. It is further revealed that the photoluminescence intensity ratio of WS2 to WSe2 in our WSe2/WS2 heterobilayer increases monotonically with tensile strain. These findings can broaden the understanding and practical application of strain engineering in 2D materials with nanometer-scale resolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Moiré Exchange Effect in Twisted WSe2/WS2 Heterobilayer
    Zhu, Jiayi
    Zheng, Huiyuan
    Wang, Xi
    Park, Heonjoon
    Xiao, Chengxin
    Zhang, Yinong
    Taniguchi, Takashi
    Watanabe, Kenji
    Yan, Jiaqiang
    Gamelin, Daniel R.
    Yao, Wang
    Xu, Xiaodong
    [J]. Physical Review Letters, 2024, 133 (08)
  • [2] Exchange between Interlayer and Intralayer Exciton in WSe2/WS2 Heterostructure by Interlayer Coupling Engineering
    Zhu, Mengqi
    Zhang, Zhineng
    Zhang, Tao
    Liu, Dongdong
    Zhang, Hao
    Zhang, Zhenxiao
    Li, Zhuolun
    Cheng, Yingchun
    Huang, Wei
    [J]. NANO LETTERS, 2022, 22 (11) : 4528 - 4534
  • [3] Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2
    Zuocheng Zhang
    Emma C. Regan
    Danqing Wang
    Wenyu Zhao
    Shaoxin Wang
    Mohammed Sayyad
    Kentaro Yumigeta
    Kenji Watanabe
    Takashi Taniguchi
    Sefaattin Tongay
    Michael Crommie
    Alex Zettl
    Michael P. Zaletel
    Feng Wang
    [J]. Nature Physics, 2022, 18 : 1214 - 1220
  • [4] Enhancement of second-harmonic generation in a 64° stacked WSe2/WS2 heterobilayer with local strain
    Chang, Sehwan
    Lee, Hoo-Cheol
    Na, Gunwoo
    Kim, Ryeong Myeong
    Moon, Yoon-Jong
    Kim, Ha-Reem
    Nam, Ki Tae
    Park, Hong-Gyu
    [J]. NANOTECHNOLOGY, 2024, 35 (14)
  • [5] Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moire WS2/WSe2
    Zhang, Zuocheng
    Regan, Emma C.
    Wang, Danqing
    Zhao, Wenyu
    Wang, Shaoxin
    Sayyad, Mohammed
    Yumigeta, Kentaro
    Watanabe, Kenji
    Taniguchi, Takashi
    Tongay, Sefaattin
    Crommie, Michael
    Zettl, Alex
    Zaletel, Michael P.
    Wang, Feng
    [J]. NATURE PHYSICS, 2022, 18 (10) : 1214 - +
  • [6] Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy
    Wang, Kai
    Huang, Bing
    Tian, Mengkun
    Ceballos, Frank
    Lin, Ming-Wei
    Mahjouri-Samani, Masoud
    Boulesbaa, Abdelaziz
    Puretzky, Alexander A.
    Rouleau, Christopher M.
    Yoon, Mina
    Zhao, Hui
    Xiao, Kai
    Duscher, Gerd
    Geohegan, David B.
    [J]. ACS NANO, 2016, 10 (07) : 6612 - 6622
  • [7] WSe2/WS2 Heterobilayer Nonvolatile Memory Device with Boosted Charge Retention
    Siao, Ming-Deng
    Gandhi, Ashish Chhaganlal
    Sahoo, Anup Kumar
    Wu, Yi-Chieh
    Syu, Hong-Kai
    Tsai, Meng-Yu
    Tsai, Tsung-Han
    Yang, Yueh-Chiang
    Lin, Yen-Fu
    Liu, Rai-Shung
    Chiu, Po-Wen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (02) : 3467 - 3475
  • [8] Strain engineering of WS2, WSe2, and WTe2
    Amin, B.
    Kaloni, T. P.
    Schwingenschloegl, U.
    [J]. RSC ADVANCES, 2014, 4 (65): : 34561 - 34565
  • [9] Pristine Interlayer Coupling for Strain Engineering of WS2/WSe2 Nanosheet-Based van der Waals Heterostructures
    Shan, Yabing
    Yue, Xiaofei
    Chen, Jiajun
    Ekoya, Borgea G. M.
    Han, Jinkun
    Hu, Laigui
    Liu, Ran
    Qiu, Zhi-Jun
    Cong, Chunxiao
    [J]. ACS APPLIED NANO MATERIALS, 2022, 5 (12) : 17986 - 17994
  • [10] Observation of Intralayer and Interlayer Excitons in Monolayered WSe2/WS2 Heterostructure
    M. Shah
    L. M. Schneider
    A. Rahimi-Iman
    [J]. Semiconductors, 2019, 53 : 2140 - 2146