Geometry of Lagrangian first-order classical field theories

被引:60
|
作者
EcheverriaEnriquez, A
MunozLecanda, MC
RomanRoy, N
机构
[1] Depto. de Matemática Aplicada, Telematica Univ. Politecnica, Cataluña Campus Nord, E-08071 Barcelona
来源
关键词
D O I
10.1002/prop.2190440304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied.
引用
收藏
页码:235 / 280
页数:46
相关论文
共 50 条
  • [1] Lagrangian constraint analysis of first-order classical field theories with an application to gravity
    Diez, Veronica Errasti
    Maier, Markus
    Mendez-Zavaleta, Julio A.
    Tehrani, Mojtaba Taslimi
    [J]. PHYSICAL REVIEW D, 2020, 102 (06):
  • [2] Routh reduction for first-order Lagrangian field theories
    Capriotti, Santiago
    Garcia-Torano Andres, Eduardo
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) : 1343 - 1376
  • [3] Routh reduction for first-order Lagrangian field theories
    Santiago Capriotti
    Eduardo García-Toraño Andrés
    [J]. Letters in Mathematical Physics, 2019, 109 : 1343 - 1376
  • [4] Geometry of multisymplectic Hamiltonian first-order field theories
    Echeverria-Enríquez, A
    Muñoz-Lecanda, MC
    Román-Roy, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7402 - 7444
  • [5] CLASSICAL FIELD THEORIES OF FIRST ORDER AND LAGRANGIAN SUBMANIFOLDS OF PREMULTISYMPLECTIC MANIFOLDS
    Campos, Cedric M.
    Guzman, Elisa
    Carlos Marrero, Juan
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (01): : 1 - 26
  • [6] SECOND-ORDER LAGRANGIAN FORMULATION OF LINEAR FIRST-ORDER FIELD EQUATIONS
    Bizdadea, Constantin
    Saliu, Solange-Odile
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (1-2): : 27 - 36
  • [7] CLASSICAL AND QUANTUM FIELD THEORIES IN THE LAGRANGIAN FORMALISM
    BERGMANN, PG
    SCHILLER, R
    [J]. PHYSICAL REVIEW, 1953, 89 (01): : 4 - 16
  • [8] On the Classification of Unstable First-Order Theories
    Mutchnik, Scott
    [J]. ProQuest Dissertations and Theses Global, 2023,
  • [9] FIRST-ORDER THEORIES CATEGORIC IN A CARDINAL
    RESSAYRE, JP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 142 (AUG) : 481 - &
  • [10] ARITIES AND ARITIZABILITIES OF FIRST-ORDER THEORIES
    Sudoplatov, S., V
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 889 - 901