Is the classical limit "singular"?

被引:2
|
作者
Steeger, Jeremy [1 ]
Feintzeig, Benjamin H. [1 ]
机构
[1] Univ Washington, Dept Philosophy, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Inter-theory reduction; Strict deformation quantization; C*-algebras; Eliminative reduction; Explanation; Category theory; DEFORMATION QUANTIZATION; ALGEBRAS; STRICT; DEVIL;
D O I
10.1016/j.shpsa.2021.05.007
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
We argue against claims that the classical h-* 0 limit is "singular" in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the h-* 0 limit. We then use the tools of category theory to demonstrate one way that this reduction is explanatory: it illustrates a sense in which the structure of quantum mechanics determines that of classical mechanics.
引用
收藏
页码:263 / 279
页数:17
相关论文
共 50 条
  • [1] An essentially singular classical limit
    Stalker, J
    [J]. ADVANCES IN MATHEMATICS, 1999, 143 (02) : 349 - 356
  • [2] THE CLASSICAL LIMIT OF FLOQUET OPERATORS WITH SINGULAR SPECTRUM
    KARNER, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 164 (01) : 206 - 218
  • [3] On the singular limit of the quantum-classical molecular dynamics model
    Bornemann, FA
    Schütte, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (04) : 1208 - 1224
  • [4] PARTICLES IN A SINGULAR ASYMPTOTIC LIMIT OF A CLASSICAL FIELD-THEORY
    STUART, DM
    [J]. STUDIES IN APPLIED MATHEMATICS, 1992, 87 (03) : 239 - 281
  • [5] ON THE PROBLEM OF SINGULAR LIMIT
    Caggio, M.
    Ducomet, B.
    Necasova, S.
    Tang, T.
    [J]. TOPICAL PROBLEMS OF FLUID MECHANICS 2023, 2023, : 6 - 12
  • [6] Limit of classical factors
    Bonneterre, J
    [J]. BULLETIN DU CANCER, 1996, 83 (12) : 1025 - 1025
  • [7] THE CLASSICAL LIMIT OF AN ATOM
    NAUENBERG, M
    STROUD, C
    YEAZELL, J
    [J]. SCIENTIFIC AMERICAN, 1994, 270 (06) : 44 - 49
  • [8] The Classical Limit as an Approximation
    Feintzeig, Benjamin H.
    [J]. PHILOSOPHY OF SCIENCE, 2020, 87 (04) : 612 - 639
  • [9] THE SINGULAR LIMIT OF A HOPF BIFURCATION
    Guckenheimer, John
    Osinga, Hinke M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (08): : 2805 - 2823
  • [10] A BIFURCATION PROBLEM AT A SINGULAR LIMIT
    MERLE, F
    PELETIER, LA
    SERRIN, J
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (02) : 585 - 609