Using mutual information index for inputs selection in feedforward neural network

被引:0
|
作者
Fei, Yunjie [1 ]
Deng, Wei [1 ]
Su, Meijuan [1 ]
机构
[1] Soochow Univ, Dept Comp Sci & Technol, Suzhou 215006, Peoples R China
关键词
feedforward neural network; mutual information index; pruning; inputs selection;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the application of the mutual information index (MII) to obtain an informative subset of the input attributes. Because the mutual information index produces a measure of the information about one variable in terms of another variable, it is suitable for assessing the information content of input attributes. An algorithm of input attributes selection is presented, which is based on MII and the greedy selection method. The proposed algorithm is applied in several examples, and the results confirm its effectiveness.
引用
收藏
页码:207 / 209
页数:3
相关论文
共 50 条
  • [1] Establishing impacts of the inputs in a feedforward neural network
    T. Tchaban
    M. J. Taylor
    J. P. Griffin
    [J]. Neural Computing & Applications, 1998, 7 : 309 - 317
  • [2] Establishing impacts of the inputs in a feedforward neural network
    Tchaban, T
    Taylor, MJ
    Griffin, JP
    [J]. NEURAL COMPUTING & APPLICATIONS, 1998, 7 (04): : 309 - 317
  • [3] Method for the selection of inputs and structure of feedforward neural networks
    Saxen, H.
    Pettersson, F.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (6-7) : 1038 - 1045
  • [4] A simple method for selection of inputs and structure of feedforward neural networks
    Saxén, H
    Pettersson, F
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 9 - 12
  • [5] Colorectal Polyp Detection Using Feedforward Neural Network with Image Feature Selection
    Muhammad, Arif Wirawan
    Sasmito, Ginanjar Wiro
    Riadi, Imam
    [J]. 2018 INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT INFORMATICS (SAIN), 2018, : 26 - 31
  • [6] Multioutput feedforward neural network selection: A Bayesian approach
    Vila, JP
    Rossi, V
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 495 - 500
  • [7] Evaluating Neural Network Robustness for Melanoma Classification using Mutual Information
    O'Brien, Molly
    Bukowski, Julia
    Hager, Greg
    Pezeshk, Aria
    Unberath, Mathias
    [J]. MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [8] An optimal Q-state neural network using mutual information
    Bollé, D
    Verbeiren, T
    [J]. PHYSICS LETTERS A, 2002, 297 (3-4) : 156 - 161
  • [9] OPTIMIZATION OF NEURAL NETWORK INPUTS BY FEATURE SELECTION METHODS
    Prochazka, Michal
    Oplatkova, Zuzana
    Holoska, Jiri
    Gerlich, Vladimir
    [J]. PROCEEDINGS - 25TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION, ECMS 2011, 2011, : 440 - 445
  • [10] Efficient Selection of Inputs for Artificial Neural Network Models
    Fernando, T. M. K. G.
    Maier, H. R.
    Dandy, G. C.
    May, R.
    [J]. MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 1806 - 1812