Thermodynamics of metal-organic frameworks

被引:39
|
作者
Wu, Di
Navrotsky, Alexandra [1 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
关键词
Metal-organic framework; Thermodynamics; Calorimetry; Energetics; Guest-host interaction and confinement; Adsorption; CARBON-DIOXIDE; MESOPOROUS SILICA; HYDROGEN STORAGE; PORE-SIZE; ZEOLITE; ENTHALPY; ENERGETICS; DESIGN; THERMOCHEMISTRY; DEHYDRATION;
D O I
10.1016/j.jssc.2014.06.015
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest-host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairly narrow range of metastability of 5-30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule-MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest-host interactions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [1] Thermodynamics of metal-organic frameworks
    Hughes, James
    Navrotsky, Alexandra
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [2] Thermodynamics of the structural transition in metal-organic frameworks
    Rodriguez, J.
    Beurroies, I.
    Coulet, M. -V.
    Fabry, P.
    Devic, T.
    Serre, C.
    Denoyel, R.
    Llewellyn, P. L.
    [J]. DALTON TRANSACTIONS, 2016, 45 (10) : 4274 - 4282
  • [3] Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks
    Arean, Carlos O.
    Chavan, Sachin
    Cabello, Carlos P.
    Garrone, Edoardo
    Palomino, Gemma T.
    [J]. CHEMPHYSCHEM, 2010, 11 (15) : 3237 - 3242
  • [4] Recent advances in experimental thermodynamics of metal-organic frameworks
    Sun, Hui
    Wu, Di
    [J]. POWDER DIFFRACTION, 2019, 34 (04) : 297 - 301
  • [5] Thermodynamics of CO2 capture in metal-organic frameworks
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [6] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [7] Metal-organic frameworks
    James, SL
    [J]. CHEMICAL SOCIETY REVIEWS, 2003, 32 (05) : 276 - 288
  • [8] Metal-organic frameworks
    Birkett, Jim
    [J]. CHEMICAL & ENGINEERING NEWS, 2017, 95 (30) : 2 - 2
  • [9] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    [J]. CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [10] Understanding the thermodynamics and energetic properties of synthetic and natural metal-organic frameworks
    Friscic, Tomislav
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257