Support vector identification of seismic electric signals

被引:5
|
作者
Ifantis, A [1 ]
Papadimitriou, S
机构
[1] Technol Educ Inst Patras, Dept Elect Engn, Patras 26334, Greece
[2] Univ Patras, Seismol Lab, Dept Geol, GR-26110 Patras, Greece
[3] Technol Educ Inst Kavala, Dept Informat Management, Kavala 65404, Greece
关键词
pattern classification; statistical learning theory; Support Vector Machine; generalization; earthquake prediction; Seismic Electric Signals (SES);
D O I
10.1142/S0218001403002484
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional pattern recognition approaches usually generalize poorly on difficult tasks as the problem of identification of the Seismic Electric Signals (SES) electrotelluric precursors for earthquake prediction. This work demonstrates that the Support Vector Machine (SVM) can perform well on this application. The a priori knowledge consists of a set of VAN rules for SES signal detection. The SVM extracts implicitly these rules from properly preprocessed features and obtains generalization performance founded upon a robust mathematical basis. The potentiality of obtaining generalization potential even in feature spaces of high dimensionality bypasses the problems due to overtraining of the conventional machine learning architectures. The paper considers the optimization of the generalization performance of the SVM. The results indicate that the SVM outperforms many alternative computational intelligence models for the task of SES pattern recognition.
引用
收藏
页码:545 / 565
页数:21
相关论文
共 50 条
  • [1] Application of the Support Vector Machine to the Identification of Human Pulse Signals
    Cai, Kunbao
    Wen, Xiaoming
    Duan, Yunzi
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 772 - 776
  • [2] Support Vector Machines and MLP for automatic classification of seismic signals at Stromboli volcano
    Giacco, Ferdinando
    Esposito, Antonietta Maria
    Scarpetta, Silvia
    Giudicepietro, Flora
    Marinaro, Maria
    [J]. NEURAL NETS WIRN09, 2009, 204 : 116 - 123
  • [3] Seismic electric signals in seismic prone areas
    Sarlis, Nicholas, V
    Varotsos, Panayiotis A.
    Skordas, Efthimios S.
    Uyeda, Seiya
    Zlotnicki, Jacques
    Nagao, Toshiyasu
    Rybin, Anatoly
    Lazaridou-Varotsos, Mary S.
    Papadopoulou, Konstantina A.
    [J]. EARTHQUAKE SCIENCE, 2018, 31 (01) : 44 - 51
  • [4] Seismic electric signals in seismic prone areas
    Nicholas V.Sarlis
    Panayiotis A.Varotsos
    Efthimios S.Skordas
    Seiya Uyeda
    Jacques Zlotnicki
    Toshiyasu Nagao
    Anatoly Rybin
    Mary S.Lazaridou-Varotsos
    Konstantina A.Papadopoulou
    [J]. Earthquake Science, 2018, 31 (01) : 44 - 51
  • [5] Seismic Event Identification Based on a Generative Adversarial Network and Support Vector Machine
    Liu, Heyi
    Song, Jindong
    Li, Shanyou
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [6] On the use of Multi-class Support Vector Machines for Classification of Seismic Signals at Cotopaxi Volcano
    Lara-Cueva, Roman
    Benitez, Diego S.
    Paillacho, Valeria
    Villalva, Michelle
    Roja-Alvarez, Jose
    [J]. 2017 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2017,
  • [7] Discrete wavelet transform and support vector machine applied to pathological voice signals identification
    Fonseca, ES
    Guido, RC
    Slivestre, AC
    Pereira, JC
    [J]. ISM 2005: SEVENTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, PROCEEDINGS, 2005, : 785 - 789
  • [8] Comments on the generation mechanism of Seismic Electric Signals
    Dologlou, E.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (12) : 3093 - 3096
  • [9] ENHANCEMENT OF SEISMIC ELECTRIC SIGNALS USING MAGNETOTELLURICS
    ARVIDSSON, R
    KULHANEK, O
    [J]. TECTONOPHYSICS, 1993, 224 (1-3) : 131 - 139
  • [10] AUTOMATIC IDENTIFICATION OF SEISMIC SIGNALS USING LARGE SEISMIC ARRAYS
    SHLIEN, S
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 777 - &