Artificial intelligence for the detection of pancreatic lesions

被引:8
|
作者
Arribas Anta, Julia [1 ,2 ]
Martinez-Ballestero, Ivan [1 ]
Eiroa, Daniel [1 ,3 ]
Garcia, Javier [1 ]
Rodriguez-Comas, Julia [1 ]
机构
[1] Sycai Technol SL, Sci & Tech Dept, Carrer Roc Boronat 117,MediaTIC Bldg, Barcelona 08018, Spain
[2] Univ Hosp, Dept Gastroenterol, 12 Octubre Av Cordoba S-N, Madrid 28041, Spain
[3] Hosp Univ Vall dHebron, Inst Diagnost Imatge IDI, Dept Radiol, Passeig Vall dHebron 119-129, Barcelona 08035, Spain
关键词
Pancreatic cancer; Pancreatic cystic lesions; Artificial intelligence; PAPILLARY MUCINOUS NEOPLASMS; SEROUS CYSTIC NEOPLASM; ENDOSCOPIC ULTRASOUND; RELATIVE ACCURACY; MANAGEMENT; DIAGNOSIS; CANCER; PREVALENCE; GUIDELINES; CT;
D O I
10.1007/s11548-022-02706-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Pancreatic cancer is one of the most lethal neoplasms among common cancers worldwide, and PCLs are well-known precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic cancer and pancreatic cystic lesions. Methods We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs). Results We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed to predict the presence of high-grade dysplasia or cancer. Conclusion AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists' tasks. However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implementation in clinical practice.
引用
收藏
页码:1855 / 1865
页数:11
相关论文
共 50 条
  • [1] Artificial intelligence for the detection of pancreatic lesions
    Julia Arribas Anta
    Iván Martínez-Ballestero
    Daniel Eiroa
    Javier García
    Júlia Rodríguez-Comas
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 1855 - 1865
  • [2] Application of Artificial Intelligence in the Management of Pancreatic Cystic Lesions
    Rangwani, Shiva
    Ardeshna, Devarshi R.
    Rodgers, Brandon
    Melnychuk, Jared
    Turner, Ronald
    Culp, Stacey
    Chao, Wei-Lun
    Krishna, Somashekar G.
    [J]. BIOMIMETICS, 2022, 7 (02)
  • [3] Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma
    Jiang, Joanna
    Chao, Wei-Lun
    Culp, Stacey
    Krishna, Somashekar G.
    [J]. CANCERS, 2023, 15 (09)
  • [4] Artificial intelligence and improved early detection for pancreatic cancer
    Zhong, Jun
    Shi, Jianxin
    Amundadottir, Laufey T.
    [J]. INNOVATION, 2023, 4 (04):
  • [5] Enhanced endoscopic ultrasound imaging for pancreatic lesions:The road to artificial intelligence
    Marco Spadaccini
    Glenn Koleth
    James Emmanuel
    Kareem Khalaf
    Antonio Facciorusso
    Fabio Grizzi
    Cesare Hassan
    Matteo Colombo
    Benedetto Mangiavillano
    Alessandro Fugazza
    Andrea Anderloni
    Silvia Carrara
    Alessandro Repici
    [J]. World Journal of Gastroenterology, 2022, 28 (29) : 3814 - 3824
  • [6] Enhanced endoscopic ultrasound imaging for pancreatic lesions: The road to artificial intelligence
    Spadaccini, Marco
    Koleth, Glenn
    Emmanuel, James
    Khalaf, Kareem
    Facciorusso, Antonio
    Grizzi, Fabio
    Hassan, Cesare
    Colombo, Matteo
    Mangiavillano, Benedetto
    Fugazza, Alessandro
    Anderloni, Andrea
    Carrara, Silvia
    Repici, Alessandro
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (29) : 3814 - 3824
  • [7] Effective abdominal ultrasonographic detection of pancreatic cystic lesions using artificial intelligence-assisted noise reduction
    Watabe, Hirotsugu
    Yasumura, Kayo
    Fukai-Watabe, Shiho
    Watabe, Tokumu
    [J]. SONOGRAPHY, 2024, 11 (03) : 177 - 183
  • [8] Detection and Classification of Coronary Bifurcation Lesions by Using Artificial Intelligence
    Liu, Xuqing
    Yang, Ruolin
    Xie, Lihua
    Zhang, Honggang
    Xu, Bo
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 74 (13) : B241 - B241
  • [9] Artificial intelligence technologies for the detection of colorectal lesions: The future is now
    Attardo, Simona
    Chandrasekar, Viveksandeep Thoguluva
    Spadaccini, Marco
    Maselli, Roberta
    Patel, Harsh K.
    Desai, Madhav
    Capogreco, Antonio
    Badalamenti, Matteo
    Galtieri, Piera Alessia
    Pellegatta, Gaia
    Fugazza, Alessandro
    Carrara, Silvia
    Anderloni, Andrea
    Occhipinti, Pietro
    Hassan, Cesare
    Sharma, Prateek
    Repici, Alessandro
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (37) : 5606 - 5616
  • [10] Artificial intelligence technologies for the detection of colorectal lesions: The future is now
    Simona Attardo
    Viveksandeep Thoguluva Chandrasekar
    Marco Spadaccini
    Roberta Maselli
    Harsh K Patel
    Madhav Desai
    Antonio Capogreco
    Matteo Badalamenti
    Piera Alessia Galtieri
    Gaia Pellegatta
    Alessandro Fugazza
    Silvia Carrara
    Andrea Anderloni
    Pietro Occhipinti
    Cesare Hassan
    Prateek Sharma
    Alessandro Repici
    [J]. World Journal of Gastroenterology, 2020, 26 (37) : 5606 - 5616