Estimates for sums of coefficients of Dirichlet series with functional equation

被引:1
|
作者
Murty, VK [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
来源
RAMANUJAN JOURNAL | 2003年 / 7卷 / 1-3期
关键词
Dirichlet series; functional equation; Fourier coefficients of modular forms;
D O I
10.1023/A:1026251313579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose we have a Dirichlet series L(s)=Sigma(n=1)(infinity) a(n)n(-s) such that it, and its twists by Dirichlet characters have analytic continuation and a functional equation of a specific kind. Suppose also that the root numbers of the twists are equidistributed on the unit circle. The purpose of this note is to get an estimate for the quantity [GRAPHICS] for a prime modulus p. We use a modification of the method of Chandrasekharan and Narasimhan and we use in an essential way a Rankin-Selberg type estimate for the average of \a(n)\(2).
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条