On Integrable Functions in Complete Bornological Locally Convex Spaces

被引:1
|
作者
Haluska, Jan [2 ]
Hutnik, Ondrej [1 ]
机构
[1] PJ Safarik Univ Kosice, Fac Sci, Inst Math, Kosice 04001, Slovakia
[2] Slovak Acad Sci, Math Inst, Kosice 04001, Slovakia
关键词
Inductive limit of Banach spaces; Dobrakov integral; locally convex space; bornology; sequential convergence; VECTOR-VALUED FUNCTIONS; RESPECT;
D O I
10.1007/s00009-011-0114-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Lebesgue-type integration theory in complete bornological locally convex topological vector spaces was introduced by the first author in [17]. In this paper we continue developing this integration technique and formulate and prove some theorems on integrable functions as well as some convergence theorems. An example of Dobrakov integral in non-metrizable complete bornological locally convex spaces is given.
引用
收藏
页码:165 / 186
页数:22
相关论文
共 50 条
  • [1] On Integrable Functions in Complete Bornological Locally Convex Spaces
    Ján Haluška
    Ondrej Hutník
    [J]. Mediterranean Journal of Mathematics, 2012, 9 : 165 - 186
  • [2] On integration in complete bornological locally convex spaces
    Haluska, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1997, 47 (02) : 205 - 219
  • [3] On integration in complete bornological locally convex spaces
    Ján Haluška
    [J]. Czechoslovak Mathematical Journal, 1997, 47 : 205 - 219
  • [4] THE GENERAL FUBINI THEOREM IN COMPLETE BORNOLOGICAL LOCALLY CONVEX SPACES
    Haluska, Jan
    Hutnik, Ondrej
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (02): : 53 - 74
  • [5] BORNOLOGICAL LOCALLY CONVEX CONES
    Ayaseh, Davood
    Ranjbari, Asghar
    [J]. MATEMATICHE, 2014, 69 (02): : 267 - 284
  • [6] Iterative spaces of locally integrable functions
    Kostin, V. A.
    Kostin, A. V.
    Kostin, D. V.
    [J]. DOKLADY MATHEMATICS, 2011, 83 (02) : 232 - 235
  • [7] Iterative spaces of locally integrable functions
    V. A. Kostin
    A. V. Kostin
    D. V. Kostin
    [J]. Doklady Mathematics, 2011, 83 : 232 - 235
  • [8] Bornological Completion of Locally Convex Cones
    Ayaseh, Davood
    Ranjbari, Asghar
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (02): : 173 - 183
  • [9] Bornological Convergence in Locally Convex Cones
    Davood Ayaseh
    Asghar Ranjbari
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 1921 - 1931
  • [10] DUAL SPACES FOR WEIGHTED SPACES OF LOCALLY INTEGRABLE FUNCTIONS
    Yulmukhametov, R. S.
    [J]. UFA MATHEMATICAL JOURNAL, 2021, 13 (04): : 112 - 122