On ω-limit sets of antitriangular maps

被引:14
|
作者
Balibrea, F
Linero, A
Cánovas, JS
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
discrete dynamical system; omega-limit set; Cournot duopoly; periodic rectangles; nowhere dense set;
D O I
10.1016/S0166-8641(03)00195-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a topological characterization of omega-limit sets of continuous antitriangular maps, that is, maps F: [0, 1](2) --> [0, 1](2) with the form F(x, y) = (f(2)(y), f(1)(x)), (x, y) is an element of I-2. We also point out some differences between omega-limit set of antitriangular and one-dimensional maps. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [1] Minimal sets of antitriangular maps
    Balibrea, F
    Linero, A
    Canovas, JS
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1733 - 1741
  • [2] Limit sets for maps of the circle
    Redkozubov, VV
    [J]. MATHEMATICAL NOTES, 2006, 79 (5-6) : 681 - 686
  • [3] ON THE ω-LIMIT SETS OF PRODUCT MAPS
    Jimenez Lopez, V.
    Kupka, J.
    Linero, A.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2010, 19 (3-4): : 667 - 678
  • [4] On the ω-limit sets of tent maps
    Barwell, Andrew D.
    Davies, Gareth
    Good, Chris
    [J]. FUNDAMENTA MATHEMATICAE, 2012, 217 (01) : 35 - 54
  • [5] Limit sets for maps of the circle
    V. V. Redkozubov
    [J]. Mathematical Notes, 2006, 79 : 681 - 686
  • [6] On α-Limit Sets in Lorenz Maps
    Cholewa, Lukasz
    Oprocha, Piotr
    [J]. ENTROPY, 2021, 23 (09)
  • [7] Topological dynamic classification of antitriangular maps
    Luo, Zhiming
    Tang, Xianhua
    Zhang, Gengrong
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2008, 10 (04) : 431 - 440
  • [8] On the local structure of ω-limit sets of maps
    Brunovsky, P
    Polacik, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (06): : 976 - 986
  • [9] A Characterization of the ω-Limit Sets of Interval Maps
    F. Balibrea
    C. La Paz
    [J]. Acta Mathematica Hungarica, 2000, 88 : 291 - 300
  • [10] A characterization of the ω-limit sets of interval maps
    Balibrea, F
    La Paz, C
    [J]. ACTA MATHEMATICA HUNGARICA, 2000, 88 (04) : 291 - 300