Staged query graph generation based on answer type for question answering over knowledge base

被引:8
|
作者
Chen, Haoyuan [1 ]
Ye, Fei [1 ]
Fan, Yuankai [1 ]
He, Zhenying [1 ]
Jing, Yinan [1 ]
Zhang, Kai [1 ]
Wang, X. Sean [1 ]
机构
[1] Fudan Univ, Songhu Rd 2005, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge base; Question answering; Semantic parsing; SPARQL; RDF;
D O I
10.1016/j.knosys.2022.109576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Question answering over knowledge base (KBQA) enables users to query over the knowledge base without the need to know the details. A range of existing KBQA approaches treats the entities mentioned in the given question as the starting point to find the answers. While helpful in achieving improvements on the existing benchmarks, they have some limitations on the strategy of query graph generation, which creates too many candidate queries and makes it hard to select the best -matching one to get the answer. In this paper, we propose a staged query graph generation approach based on the answer type, which exploits the correlation between questions and answer types to reduce the size of the candidate set and further improve the performance. Besides, we construct a question/answer-type (QAT) dataset aiming to predict the answer type of a given question. Extensive experiments demonstrate our method outperforms existing methods on both simple questions and complex questions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base
    Yih, Wen-tau
    Chang, Ming-Wei
    He, Xiaodong
    Gao, Jianfeng
    [J]. PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 1321 - 1331
  • [2] Hierarchical Query Graph Generation for Complex Question Answering over Knowledge Graph
    Qiu, Yunqi
    Zhang, Kun
    Wang, Yuanzhuo
    Jin, Xiaolong
    Bai, Long
    Guan, Saiping
    Cheng, Xueqi
    [J]. CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1285 - 1294
  • [3] Answer Graph-based Interactive Attention Network for Question Answering over Knowledge Base
    Ma, Lu
    Zhang, Peng
    Luo, Dan
    Zhou, Meilin
    Liang, Qi
    Wang, Bin
    [J]. 2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 521 - 528
  • [4] Question Answering over Knowledge Graphs with Query Path Generation
    Yang, Linqing
    Guo, Kecen
    Liu, Bo
    Gong, Jiazheng
    Zhang, Zhujian
    Zhao, Peiyu
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 146 - 158
  • [5] Formal Query Generation for Question Answering over Knowledge Bases
    Zafar, Hamid
    Napolitano, Giulio
    Lehmann, Jens
    [J]. SEMANTIC WEB (ESWC 2018), 2018, 10843 : 714 - 728
  • [6] Two-Stage Query Graph Selection for Knowledge Base Question Answering
    Jia, Yonghui
    Tan, Chuanyuan
    Chen, Yuehe
    Zhu, Muhua
    Chao, Pingfu
    Chen, Wenliang
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 16 - 28
  • [7] Knowledge Base Question Answering via Structured Query Generation using Question domain
    Li, Jiecheng
    Peng, Zizhen
    Zhu, Xiaoying
    Lu, Keda
    [J]. 2022 IEEE 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS, IUCC/CIT/DSCI/SMARTCNS, 2022, : 394 - 400
  • [8] Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base
    Chen, Yongrui
    Li, Huiying
    Hua, Yuncheng
    Qi, Guilin
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3751 - 3758
  • [9] How Question Generation Can Help Question Answering over Knowledge Base
    Hu, Sen
    Zou, Lei
    Zhu, Zhanxing
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I, 2019, 11838 : 80 - 92
  • [10] FactQA: question answering over domain knowledge graph based on two-level query expansion
    Zhang, Xiaoming
    Meng, Mingming
    Sun, Xiaoling
    Bai, Yu
    [J]. DATA TECHNOLOGIES AND APPLICATIONS, 2020, 54 (01) : 34 - 63