Geometric Galois theory, nonlinear number fields and a Galois group interpretation of the idele class group

被引:3
|
作者
Gendron, TM [1 ]
Verjovsky, A [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62210, Morelos, Mexico
关键词
algebraic number field; Galois theory; adele class group; Hardy space; class field theory; solenoid;
D O I
10.1142/S0129167X05002989
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over Q, a hyperbolized adele class group G(K) is assigned to every number field K/Q. The projectivization of the Hardy space PH.[K] of graded-holomorphic functions on G(K) possesses two operations circle plus and circle times giving it the structure of a nonlinear field extension of K. We show that the Galois theory of these nonlinear number fields coincides with their discrete counterparts in that Gal(PH.[K]/K) = 1 and Gal(PH.[L]/PH.[K]) congruent to Gal(L/K) if L/K is Galois. If K-ab denotes the maximal abelian extension of K and C-K is the idele class group, it is shown that there are embeddings of C-K into Gal circle plus(PH.[K-ab]/K) and Gal circle times(PH.[K-ab]/K), the "Galois groups" of automorphisms preserving circle plus (respectively, circle times) only.
引用
收藏
页码:567 / 593
页数:27
相关论文
共 50 条